RESEARCH AND DEVELOPMENT OF
SOLAR THERMAL ENERGY IN THAILAND

PRIDA WIBULSWAS*
Division of Energy Technology
Asian Institute of Technology
Bangkok, Thailand

ABSTRACT

The annual average intensity of daily total solar radiation in Thailand is about 17 MJ/m² day which can be considered as fairly good. Several types of solar thermal equipment and systems have been developed in Thailand. Though solar water heaters have already been manufactured in the country, research and development to increase the efficiency and to reduce the first cost are still continued. Industrial standards for solar collectors and water heaters should be set up. Research and development on horizontal-surface and vertical-surface solar stills have been advanced enough for demonstration of large solar stills. Free-convection solar dryers have been developed and used commercially with some success. Large-scale forced convection solar dryers are being developed for bulk agricultural products and industrial applications. Other solar thermal equipment under research and development are absorption refrigerators, water pumps, solar ponds for heat and power generation. Since solar radiation in Thailand consists of 50% diffuse component, solar concentrators which can collect only direct radiation would be less economical than flat plate collectors which can collect both diffuse and direct radiation.

SOLAR RADIATION

Daily total solar radiation on horizontal plane in Thailand has an annual average intensity of about 17 MJ/m² day or 4.72 kWh/m² day¹ which is approximately equal to heat released from combustion of 1 kg of dry wood. Diffuse component of the solar radiation is quite high and on the average about 50% of the total solar radiation.

---

*Presently on leave from School of Energy and Materials, King Mongkut's Institute of Technology Thonburi, Bangkok 10140.
Over fifty pyranometers for measuring total solar radiation exist in Thailand. Most of them have however not been regularly calibrated since there is no active calibration centre for solar radiometers in this region. Only a few pyrheliometers have been kept in working order.

Several models for predicting solar radiation in Thailand have been developed. One model is based upon the past data on sunshine durations covering a period of about 5 years. Another model was developed from 10-year records of total solar radiation in Thailand. A total radiation model based upon satellite images taken through infrared channel has been recently developed.

Fig. 1 Solar Assisted Tobacco Curing Barn

WATER HEATING

More than five companies in Thailand manufacture flat plate collectors for water heating. Total areas of installed collectors exceed 40,000 m². Current annual production of flat plate collectors in the country is about 10,000 m². About fifty percent of the collectors are installed in hotels and hospitals and the rest are used for domestic water heating. An economic assessment indicates that a pay-back period of about 7-10 years may be achieved in comparison with electric water heating.

During the last five years, several types of improved flat plate collectors have been developed in Thailand such as serpentine double-glazed collectors, compound parabolic collectors, reversed flat plate collectors. Details of these
improved collectors are available for manufacturing if required by the market or for integration into other solar thermal equipment such as absorption refrigerators, thermal water pumps, etc.

Fig. 2 Solar Thermal Collector having two absorbing surfaces

To promote the quality of locally produced flat plate collectors, an industrial standard for solar thermal flat plate collectors is being drafted by Thai Industrial Standards Institute and is expected to be completed within 1988. A relatively simple test standard for thermo-syphon solar water heaters has been developed and unofficially used in Thailand. A national test standard for solar water heaters should be urgently set up. A solar simulator has been designed and built in order to facilitate testing of solar thermal and photovoltaic equipment.

To improve the efficiency of flat plate collectors, techniques for selective coating of black-chrome and black-nikel have been developed in Thailand up to pilot-plant scale, and are readily available to be transferred to industry. A study on different types of bondages between fins and tubes of flat plate collectors was conducted and suitable types of bondages were identified.

DISTILLATION

It has been estimated that the solar energy used in salt production from sea water in Thailand is equivalent to about 19 million barrels of oil per annum. Several types of solar stills with horizontal absorbing surfaces have been developed. Portable ones have their basins made of aluminum or stainless steel. Basins of
stationary stills are normally made of bricks or concrete. Performance tests of portable and largest solar stills have been conducted in the field. The larger demonstration still has the total absorbing area of 200 m² and is used to supply distilled water to a large laboratory.\textsuperscript{14}

![Fig.3 A 200 sq.m solar still\textsuperscript{14}](image)

A large solar still with horizontal absorbing surface requires a large installation area which can be expensive in a city. The problem can be lessened if a vertical surface solar still is installed on a parapet or a wall of a building. Development of vertical surface stills began about six years ago\textsuperscript{15}. Optimum designs have already been developed for various types of installation\textsuperscript{16}. Performance test and demonstration of a large vertical surface solar still is now being planned.

**Drying**

Solar dryers have been developed for drying of grains, fruits, vegetables, meat and fish\textsuperscript{17}. Solar energy used in paddy drying alone is estimated at about half a million barrels of oil equivalent per annum. Free-convection solar dryers are suitable for domestic or small-scale commercial drying. Field tests of box-type and cabinet-type free-convection dryers indicate that they are suitable for drying of bananas, meat and fish\textsuperscript{18}. Commercial drying of bananas and other fruits in free-convection dryers has already achieved some success in the northern part of Thailand.\textsuperscript{19}
Drying of bulk materials such as grains generally requires forced convection. A pilot-scale solar drying hut has been developed to dry and also store up to seven tons of paddy. A solar assisted tobacco curing barn has also been developed to save fire-wood which is a major cause of deforestation in Thailand. Development of a large-scale maize dryer has been in progress for about two years. As research and development on large-scale solar dryers are very active, it is expected that industrial applications of solar drying may soon be achieved in Thailand.

COOKING

Several types of solar cookers have been developed such as flat-plate-collector-type using heat transfer oil as the working fluid, parabolic dishes with sun-tracking mechanism, etc. Like most countries, social acceptance of solar cookers encounters several barriers. Firstly, users of solar cookers are exposed to solar radiation. Secondly, solar radiation is not sufficient for cooking breakfast and evening meal. A thermal storage has been developed for evening cooking but found to be too expensive for a practical use.

Since fire-wood, charcoal and LPG are still available in Thailand at relatively cheap prices, it will be very difficult to popularize solar cookers in the country.
THERMAL POWER SYSTEMS

A physical model of a central tower system with tracking heliostats was designed and constructed\textsuperscript{24}. Simulation of the physical model shows that the system should be technically workable for Thailand but its initial cost would be too high for an economical operation.

A distributed collector system was also developed\textsuperscript{25}. The system consisted of three tracking parabolic troughs connected in series with the total collector area of 12 m\textsuperscript{2}. The system demonstrated a local technical capability but its first cost was also too high for practical purpose.

The above two types of solar thermal power systems accept only direct solar radiation, hence for operation in Thailand, the diffuse solar radiation amounting to 50\% of the total radiation would be wasted. Development of solar ponds for heat or power generation would be more promisingly economical than the concentrator systems since solar ponds accept both diffuse and direct radiation.

A study was conducted on a circular solar pond with an area of about 50 m\textsuperscript{2} and brine was used as the working fluid\textsuperscript{26}. Another study on a rectangular pond of 50 m\textsuperscript{2} and also with brine as the working fluid was used as a basis for technical and economic assessment under operating conditions in Thailand\textsuperscript{27}.

OTHER THERMAL SYSTEMS

Development of absorption refrigeration systems using solar heat for the generation of ammonia from ammonia–water solution has progressed to construction and performance tests of prototypes\textsuperscript{28,29}. Though fabrication technique exists in the country, the first cost of the systems is still much too high for practical applications. Research on another type of absorption system using methanol and activated charcoal has received more attention recently\textsuperscript{30} since both alcohol and activated charcoal are locally produced.

A solar thermal pumping system using normal pentane as the working fluid was designed, constructed and tested. Though the system was workable, its efficiency was still below 1\%\textsuperscript{31} which was much lower than a photovoltaic pumping system.

RECOMMENDATIONS

1. A regional centre for calibrating solar radiometers should be seriously considered by ASEAN.
2. Research and development to increase the efficiencies and to reduce the costs of solar liquid heating systems should be supported. National standards for
performance tests and fabrication of hot water heating systems should be urgently set up.

3. Performance tests and demonstration of large solar stills should now be conducted in industry and large laboratories. Research and development of solar distillation of ethanol fermented from agricultural products should be supported.

4. Small free-convection solar dryers for fruits, meat and fish should be immediately promoted in rural households. Development of large solar dryers for bulk agricultural products and industrial processes should be accelerated.

5. Research and development on solar thermal refrigerators, water pump and solar pond should be continued.

6. To avoid repetitive works, solar energy researchers are recommended to obtain detailed R&D information from the following centres:
   (a) Renewable Energy Research Information Centre, AIT, P.O. Box 2754, Bangkok.
   (b) Central Library, KMITT, Bangmod, Bangkok 10140.

REFERENCES


