Dose Analysis of In Vitro and In Vivo Test for Boron Neutron Capture Therapy (BNCT)
AJSTD 35(3)
pdf

Keywords

BNCT
BNCT dose
SHIELD-HIT12A

Abstract

The purpose of this study was to determine the in vitro and in vivo doses of boron neutron capture cancer therapy (BNCT) using the SHIELD-HIT12A program. To be able to determine the recoil energy, the research was conducted using the Monte Carlo method. Running data obtained the value of ionization activity and recoil lost. The results showed that in vitro and in vivo doses of BNCT for soft tissue irradiation had a value of 0.312 × 10-2 Sv, which is safe and does not harm healthy body tissue around the cancer cells because it is below the threshold of 1.5 Rem or 15 × 10-3 Sv, in accordance with the provisions of the upper value permitted by the International Commission on Radiation Protection in 1966. While the comparative targets are water, the optimal target absorption dose was obtained at concentrations of 3.232 × 10-3 Gy. The dose of carbon equivalent in water with the type of thermal neutron radiation was 16.16 × 10-3 Sv; this dose is classified as unsafe.

https://doi.org/10.29037/ajstd.522
pdf

References

Barth RF, Grecula JC, Yang W, Rotaru JH, Nawrocky M, Gupta N, Albertson BJ, Ferketich AK, Moeschberger ML, Coderre JA, Rofstad EK. 2004. Combination of boron neutron capture therapy and external beam radiotherapy for brain tumors. Int J Radiat Oncol Biol Phys. 58(1):267–277. doi:10.1016/S0360-3016(03)01613-4.


Bassler N, Luehr A, Hansen DC, Sobolevsky N. 2017. SHIELDHIT12a- user’s guide.

BATAN. 2013. Radiasi [Adobe Digital Editions]. Yogyakarta: BATAN Pusdiklat eLearning.

Erawati F O, Riyatun R, Suharyana S. 2015. Modification of materials and thickness layer of radial piercing beamport (RPB) reflector on Kartini reactor for boron neutron capture therapy (BNCT). Indones J Appl Phys. 5(01):94. doi:10.13057/ijap.v5i01.270.

Matsumura A, Kumada H, Yoshioka M, Kiyanagi Y, Nakashima H. 2013. Current status of accelerator BNCT at Tsukuba and considerations for accelerator based neutron source. Tsukuba: Tsukuba University.

Rasad S. 2005. Radiologi diagnostik [Diagnostic radiology]. 2nd edition. Jakarta: Badan Penerbit FKUI.

Rasouli FS, Masoudi SF. 2012. Simulation of the BNCT of brain tumors using MNCP code: beam designing and
dose evaluation. Iranian J Medi Phys. (3). doi:10.22038/ijmp.2012.150.

Sauerwein W, Wittig A, Moss R, Nakagawa Y, editors. 2012. Neutron capture therapy: principles and applications.
Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-31334-9.

Solleh MRM, Tajuddin AA, Mohamed AA, Munem EMEA, Rabir MH, Karim JA, Yoshiaki K. 2011. Collimator and
shielding design for boron neutron capture therapy (BNCT) facility at TRIGA MARK II reactor. J Nucl Relat Technol. 8(2):41–48.

US Department of Energy. 1993. DOE Fundamentals Handbook, Nuclear Physics and Reactor Theory — DOE
Technical Standards Program. Washington, D.C.: U.S. Department of Energy.

Zasneda S. 2009. Perhitungan dosis pada boron neutron cancer therapy (BNCT) dengan menggunakan faktor geometri permukaan bola untuk kasus glioblastoma multiforme [master’s thesis]. [Bandung]: Institut Teknologi Bandung.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.