Rockwell Hardness Testing of Pure Nickel Collimators for BNCT Application
AJSTD 36(1) cover
pdf

Keywords

Brinell hardness testing
Centrifugal casting
Nickel
Rockwell hardness testing

Abstract

In this study, Rockwell and Brinell hardness testing was used to examine material hardness. These methods were chosen because they are easy to carry out, relatively inexpensive, and almost all sizes and shapes can be tested, in which nickel hardness before and after centrifugal casting are identified and compared. These tests enable the determination of the hardness numbers of nickel collimators using for boron neutron capture therapy. The samples were five nickel plates with a dimension of 4.5 × 4.5 cm and five collimators. The collimators were cylindrical and made using centrifugal casting. The basic principle of the hardness test was to apply loading on the object being tested. The Rockwell test was used to assess the material's hardness from the difference of indentation depth, while the Brinell test was used to determine the hardness from the diameter of indentation. From the results of this test, the hardness number of nickel before centrifugal casting is 168.53 BHN or 86.13 HRB, while the hardness number after centrifugal casting is 115.68 BHN or 64.84 HRB. It can therefore be concluded that centrifugal casting decreased nickel hardness.

https://doi.org/10.29037/ajstd.525
pdf

References

ASTM International. 2017. Standard test methods for rockwell hardness of metallic materials. Technical report. ASTM International. West Conshohocken.

Awotunde WO, Olatunde OB, Ponle EA, Fatukasi SO. 2014. Design, fabrication and performance evaluation of a hardness testing machine. IOSR J Eng. 4(5):1–6.

Aydemir B, Cal B, Salman S. 2011. The advantages of new generation hardness measurement methods. Turkey: Center for Quality, Faculty of Mechanical Engineering, University of Kragujevac. p. 337–344.

Barajas C, de Vicente J, Caja J, Maresca P, Gómez E. 2017. Considerations to the hardness Brinell measurement using optical equipment. Procedia Manuf. 13:550–557. doi:10.1016/j.promfg.2017.09.089.

Bavarnegin E, Kasesaz Y, Wagner FM. 2017. Neutron beams implemented at nuclear research reactors for BNCT. J Inst. 12(05):P05005. doi:10.1088/1748-0221/12/05/P05005.

Bilalodin B, Kusminarto K, Hermanto A, Sardjono Y, Sunardi S. 2017. Double layer collimator for BNCT neutron source based on 30 MeV cyclotron. Indones J Phys Nucl Appl. 2(3):124–127. doi:10.24246/ijpna.v2i3.124-127.

Brandao SF, Campos TPR. 2009. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252 Cf brachytherapy. 2009 International Nuclear Atlantic Conference. Rio de Janeiro: Associação Brasileira de Energia Nuclear.

Ebhota WS, Karun AS, Inambao FL. 2016. Centrifugal casting technique baseline knowledge, applications, and processing parameters: overview. Int J Mater Res. 107(10):960–969. doi:10.3139/146.111423.

Elfahmi, Woerdenbag HJ, Kayser O. 2014. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. J Herb Med. 4(2):51–73. doi: 10.1016/j.hermed.2014.01.002.

Fantidis JG, Nicolaou G. 2018. Optimization of beam shaping assembly design for boron neutron capture therapy based on a transportable proton accelerator. Alexandria Eng J. 57(4):2333–2342. doi:10.1016/j.aej.2017.08.004.

Gyurkó Z, Borosnyói A. 2015. Brinell-hardness testing and discrete element modelling of hardened concrete. Epitoanyag - J Silic Based Compos Mater. 67(1):8–11. doi:10.14382/epitoanyag-jsbcm.2015.2.

Hassanein A, Hassan M, Mohamed NM, Abou Mandour M. 2018. An optimized epithermal BNCT beam design for research reactors. Prog Nucl Energy. 106:455–464. doi:10.1016/j.pnucene.2018.03.018.

Hassanpour SH, Dehghani M. 2017. Review of cancer from perspective of molecular. J Cancer Res Pract. 4(4):127–129. doi:10.1016/j.jcrpr.2017.07.001.

International Atomic Energy Agency. 2001. Current status of neutron capture therapy. Technical publication 1223. International Atomic Energy Agency. Vienna.

Iqbal M, Patel S, Vidyarthee G. 2014. Simulation of casting and its validation by experiments. Int J Eng Sci Res Technol. 3(8):555–565.

Kasesaz Y, Bavarnegin E, Golshanian M, Khajeali A, Jarahi H, Mirvakili S, Khalafi H. 2016. BNCT project at Tehran Research Reactor: current and prospective plans. Prog Nucl Energy. 91:107–115. doi:10.1016/j.pnucene.2016.04.010.

Kondo N, Michiue H, Sakurai Y, Tanaka H, Nakagawa Y, Watanabe T, Narabayashi M, Kinashi Y, Suzuki M, Masunaga Si, Ono K. 2016. Detection of γH2AX foci in mouse normal brain and brain tumor after boron neutron capture therapy. Rep Pract Oncol Radiother. 21(2):108–112. doi:10.1016/j.rpor.2014.10.005.

Lage A, Romero T. 2018. Back and forth between cancer treatment and cancer control programs: Insights from the Cuban experience. Semin Oncol. 45(1-2):12–17. doi:10.1053/j.seminoncol.2018.04.004.

Low S, Machado RR. 2018. Technique to reduce bending issues in Rockwell B scale hardness reference blocks: preliminary results. J Phys Conf Ser. 1065:062006. doi:10.1088/1742-6596/1065/6/062006.

Low SR. 2001. Rockwell hardness measurement of metallic materials. Special Publication (NIST SP) - 960-5.

Maitz CA, Khan AA, Kueffer PJ, Brockman JD, Dixson J, Jalisatgi SS, Nigg DW, Everett TA, Hawthorne MF. 2017. Validation and comparison of the therapeutic efficacy of boron neutron capture Therapy mediated by boron-rich liposomes in multiple murine tumor models. Trans Oncol. 10(4):686–692. doi:10.1016/j.tranon.2017.05.003.

Mujiyono M, Suharto S, Mukhammad AFH, Nurhadiyanto D, Sumowidagdo AL. 2018. Manufacture of nickel collimator for BNCT: smelting of nickel using electrical arc furnace and centrifugal casting preparation. Indones J Phys Nucl Appl. 3(1):21–28. doi:10.24246/ijpna.v3i1.21-28.

Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S. 2016. Boron neutron capture therapy - a literature review. J Clin Diagn Res. 10(12):ZE01–ZE04. doi:10.7860/JCDR/2016/19890.9024.

Qin SY, Cheng YJ, Lei Q, Zhang AQ, Zhang XZ. 2018. Combinational strategy for high-performance cancer chemotherapy. Biomaterials. 171:178–197. doi:10.1016/j.biomaterials.2018.04.027.

Romero-Canelón I, Phoenix B, Pitto-Barry A, Tran J, Soldevila-Barreda JJ, Kirby N, Green S, Sadler PJ, Barry NP. 2015. Arene ruthenium dithiolato–carborane complexes for boron neutron capture therapy (BNCT). J Organomet Chem. 796:17–25. doi:10.1016/j.jorganchem.2015.05.011.

Sarfati D, Garvey G, Robson B, Moore S, Cunningham R, Withrow D, Griffiths K, Caron NR, Bray F. 2018. Measuring cancer in indigenous populations. Ann Epidemiol. 28(5):335–342. doi:10.1016/j.annepidem.2018.02.005.

Song JF, Low S, Pitchure D, Germak A, DeSogus S, Polzin T, Yang HQ, Ishida H. 1998. Establishing a worldwide unified Rockwell hardness scale using standard diamond indenters. Measurement. 24(4):197–205. doi:10.1016/S0263-2241(98)00052-9.

Sudhakar A. 2009. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 01(02):i–iv. doi:10.4172/1948-5956.100000e2.

Zhu X, Wang H, Lu Y, Wang Z, Zhu K, Zou Y, Guo Z. 2018. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications. Nucl Instrum Methods Phys Res, Sect A. 883:57–74. doi:10.1016/j.nima.2017.11.042.

Downloads

Download data is not yet available.