Dose Analysis of Boron Neutron Capture Therapy (BNCT) Treatment for Lung Cancer Based on Particle and Heavy Ion Transport code System (PHITS)
AJSTD 35(3)
pdf

Keywords

BNCT
Irradiation time
Lung cancer
PHITS

Abstract

The objectives of this study were to determine the effect of boron concentration on total dose rate for lung cancer treatment, and to determine the effect of boron concentration on the length of irradiation time for lung cancer treatment. This study was computer simulation-based using the Particle and Heavy Ion Transport code System (PHITS) by defining the geometry and components of lung cancer and the surrounding organism as the object being studied and the source of radiation used. The type of phantom used was the ORNL of an adult Asian male. The neutron source used was Kartini Reactor. The independent variable was the boron concentration of 30, 40, 50, 60, and 70 μg/g cancer tissue and the dependent variables were the dose rate and the irradiation time. The results of this study indicated that the larger the amount of boron concentration that was injected, the higher the rate of total dose the organ received, where the total dose rate for each variation of boron concentration were 1.34 × 10-3 Gy/s, 1.71 × 10-3  Gy/s, 2.07 × 10-3 Gy/s, 2.42 × 10-3  Gy/s, and 2.78 × 10-3 Gy/s, and the larger the amount of boron concentration that was injected, the faster the irradiation time for the treatment of lung cancer was, where the irradiation time required for each variation of boron concentration was 37294 s, 29240 s, 24180 s, 20633 s, and 17996 s.

https://doi.org/10.29037/ajstd.545
pdf

References

Ardana IM, Sardjono Y. 2017. Optimization of a neutron beam shaping assembly design for BNCT and its dosimetry simulation based on MCNPX. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. 19(3):121. doi:10.17146/tdm.2017.19.3.3582.

Barth RF, H Vicente MG, Harling OK, Kiger W, Riley KJ,Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S. 2012. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol. 7(1):146. doi:10.1186/1748-717X-7-146.

Bavarnegin E, Sadremomtaz A, Khalafi H. 2013. The three dimensional map of dose components in a head phantom for boron neutron capture therapy. Nucl Technol Radiat Prot. 28(3):273–277. doi:10.2298/NTRP1303273B

Bortolussi S, Bakeine J, Ballarini F, Bruschi P, Gadan M, Protti N, Stella S, Clerici A, Ferrari C, Cansolino L, Zonta C, Zonta A, Nano R, Altieri S. 2011. Boron uptake measurements in a rat model for boron neutron capture therapy of lung tumours. Appl Radiat Isot. 69(2):394–398. doi:10.1016/j.apradiso.2010.11.018.

Calabuig-Fariñas S, Jantus-Lewintre E, Herreros-Pomares A, Camps C. 2016. Circulating tumor cells versus circulating tumor DNA in lung cancer—which one will win?Transl Lung Cancer Res. 5(5):466–482. doi:10.21037/tlcr.2016.10.02.

Cancer Research UK. 2017. What is cancer?https://www.-cancerresearchuk.org/about-cancer/what-is-cancer.

Chan BA, Hughes BGM. 2015. Targeted therapy for nonsmall cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 4(1):36–54. doi:10.3978/j.issn.2218-6751.2014.05.01.

Eckerman K, Cristy M, Ryman J. 1996. The ORNL mathematical phantom series. Oak Ridge: Oak Ridge National Laboratory.http://ordose.ornl.gov/resources/Mird.pdf.

Farías RO, Bortolussi S, Menéndez PR, González SJ. 2014. Exploring boron neutron capture therapy for non-small cell lung cancer. Physica Med. 30(8):888–897. doi:10.1016/j.ejmp.2014.07.342.

Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C,Davies P, Goldberg TE, Alzheimer’s Disease Neuroimaging Initiative. 2011. Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Arch Gen Psychiatry. 68(9):961–969. doi:10.1001/archgenpsychiatry.2011.96.

Irwin MR, Cole SW. 2011. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol. 11(9):625–632. doi:10.1038/nri3042.

Kiger J, Kiger W, Patel H, Binns P, Riley K, Hopewell J, Harling O, Coderre J. 2004. Effects of boron neutron capture irradiation on the normal lung of rats. Appl Radiat Isot. 61(5):969–973. doi:10.1016/j.apradiso.2004.05.021.

Krstic D, Jovanovic Z, Markovic V, Nikezic D, Urosevic V.2014a. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy. Open Physics.12(10):714–718. doi:10.2478/s11534-014-0507-2.

Krstic D, Markovic VM, Jovanovic Z, Milenkovic B, Nikezic D, Atanackovic J. 2014b. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy. Radiat Prot Dosim. 161(1-4):269–273. doi:10.1093/rpdnct365.

Kumada H, Nakamura T, Komeda M, Matsumura A. 2009.Development of a multi-modal Monte-Carlo radiation treatment planning system combined with PHITS. In:AIP Conference Proceedings. volume 1153. AIP. p. 377–387. doi:10.1063/1.3204547.

Kumada H, Takada K, Yamanashi K, Sakae T, Matsumura A,Sakurai H. 2015. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy. Appl Radiat Isot. 106:111–115. doi:10.1016/j.apradiso.2015.08.032.

Matsumoto T. 2007. Monte Carlo simulation of depth–dose distribution in several organic models for boron neutron capture therapy. Nucl Instrum Methods Phys Res,Sect A. 580(1):552–557. doi:10.1016/j.nima.2007.05.233.

Moss RL. 2014. Critical review, with an optimistic outlook,on boron neutron capture therapy (BNCT). Appl Radiat Isot. 88:2–11. doi:10.1016/j.apradiso.2013.11.109.

National Cancer Institute. 2015. Types of cancer treatment.https://www.cancer.gov/about-cancer/treatment/ types.

Novitasari IS. 2015. Analisis fluks neutron pada beam port tembus radial reaktor Kartini untuk fasilitas uji in vivo dan in vitro boron neutron capture therapy (BNCT)[Neutron flux analysis on radial piercing beam port of Kartini reactor for experiment facility of in vivo and in vitro boron neutron capture therapy (BNCT)] [bachelor thesis]. Yogyakarta]: Universitas Negeri Yogyakarta.https://eprints.uny.ac.id/2733.

Oktajianto H, Setiawati E. 2016. Monte Carlo simulation in internal radiotherapy of thyroid cancer. Int J Eng Technol Manage Res. 3(9):16–24. doi:10.5281/zenodo.159151.

Pakzad R, Mohammadian-Hafshejani A, Ghoncheh M,Pakzad I, Salehiniya H. 2015. The incidence and mortality of lung cancer and their relationship to development in Asia. Transl Lung Cancer Res. 4(6):763–774. doi:10.3978/j.issn.2218-6751.2015.12.01.

Petoussi-Henss N, Bolch W, Eckerman K, Endo A, Hertel N,Hunt J, Pelliccioni M, Schlattl H, Zankl M. 2010. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann ICRP. 0(2-5):1–257. doi:10.1016/j.icrp.2011.10.001.

Sardjono Y. 2015. Pengenalan fisika neutron – prinsip dasar:desain boron neutron capture therapy (BNCT) [Introduction to eutron physics – the basic principles: boron neutron capture therapy (BNCT) design]. 1st edition.Yogyakarta: Galang Press.

Sardjono Y, Widodo S, Irhas I, Tantawy H. 2016. A design of boron neutron capture therapy for cancer treatment in Indonesia. Indones J Phys Nucl Appl. 1(1):1. doi:10.24246/ijpna.v1i1.1-13.

Sauerwein W, Wittig A, Moss R, Nakagawa Y, editors. 2012.Neutron capture therapy. Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-31334-9.

Sauerwein WA, Moss RL. 2009. Requirements for boron neutron capture therapy (BNCT) at a nuclear research reactor. Technical report. Office for Official Publications of the European Communities. Luxembourg. doi:10.2790/11743.

Stewart B, Wild C. 2014. World Cancer Report 2014. International Agency for Research on Cancer.

Suzuki M, Suzuki O, Sakurai Y, Tanaka H, Kondo N, Kinashi Y, Masunaga Si, Maruhashi A, Ono K. 2012. Reirradiation for locally recurrent lung cancer in the chest wall with boron neutron capture therapy (BNCT). Intl Cancer Conf J. 1(4):235–238. doi:10.1007/s13691-012-0048-8.

Takada K, Isobe T, Kumada H, Yamamoto T, Shida K,Kobayashi D, Mori Y, Sakurai H, Sakae T. 2014. Evaluation of the radiation dose for whole body in boron neutron capture therapy. Prog Nucl Sci Technol. 4:820–823. doi:10.15669/pnst.4.820.

Trivillin V, Garabalino M, Colombo L, González S, Farías R, Hughes AM, Pozzi E, Bortolussi S, Altieri S, Itoiz M, Aro- mando R, Nigg D, Schwint A. 2014. Biodistribution of the boron carriers boronophenylalanine (BPA) and/ordecahydrodecaborate (GB-10) for boron neutron capture therapy (BNCT) in an experimental model of ung metastases. Appl Radiat Isot. 8.

Tsim S, O’Dowd C, Milroy R, Davidson S. 2010. Staging of non-small cell lung cancer (NSCLC): a review. Respi Med. 104(12):1767–1774. doi:10.1016/j.rmed.2010.08.005.

Vallenry BY, Widiharto A, Sardjono Y. 2015. Pemodelan kolimator di radial beam port reaktor Kartini untuk boron neutron capture therapy [Design of collimator in the radial piercing beam port of Kartini reactor for boron neutron capture therapy]. J Nucl React Technol.16(1):11–20.

Wahyuningsih D. 2014. Optimasi desain kolimator untuk uji in vivo boron neutron capture therapy (BNCT) pada beam port tembus reaktor Kartini menggunakan simulasi Monte Carlo N Particle 5 (MCNP 5) [Collimator design optimation for in vivo testing of boron neutron capture therapy on radial piercing beam port in Kartini nuclear reactor using MCNP 5] [master’s thesis]. [Yogyakarta]: Universitas Gadjah Mada. http://etd.ugm.ac.i /index.php?mod=penelitian_detail⊂=PenelitianDetail&act=view&typ=html&buku_id=73859.

Weaver H, Coonar AS. 2017. Lung cancer: diagnosis, staging and treatment. Surgery. 35(5):247–254. doi:10.1016/j. mpsur.2017.02.007.

Weir HK, Anderson RN, Coleman King SM, Soman A, Thompson TD, Hong Y, Moller B, Leadbetter S. 2016. Heart disease and cancer deaths — trends and projections in the United States, 1969–2020. Prev Chronic Dis.13. doi:10.5888/pcd13.160211.

[WHO] World Health Organization. 2017a. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.

[WHO] World Health Organization. 2017b. The top 10causes of death. https://www.who.int/news room/factheetsdetail/the-top-10-causes-of-death.

Zappa C, Mousa SA. 2016. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 5(3):288–300. doi:10.21037/tlcr.2016.06.07.

Zolfaghari M, Sedaghatizadeh M. 2015. Design and simulation of photoneutron source by MCNPX Monte Carlo code for boron neutron capture therapy. Iranian J MedPhys. 12(2):129–136. doi:10.22038/ijmp.2015.47.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.