Stable Carbon Isotope Signature of Particulate Organic Matter in the Southwestern Sumatran Waters of the Eastern Indian Ocean
AJSTD 36(2) cover
pdf

Keywords

Biogeochemistry
Chlorophyll-a
Nutrient
Organic matter origin
Particulate organic matter

Abstract

The Southwestern Sumatran Waters of the Eastern Indian Ocean are known to be affected by the South Java Current and the South Equatorial Counter Current. Many studies have been carried out in relation to upwelling and the Indonesian Through Flow. However, there has been no systematic study into the properties of the particulate organic matter in the Southwestern Sumatran Waters. Therefore, the organic matter in these waters in terms of its origin is unknown. As part of the Widya Nusantara Expedition 2015 research cruise, this study aimed to examine the stable isotope δ13C signature of particulate organic matter (POM), especially with regards to the origins of the organic matter. The stable isotope δ13C is complemented by other variables such as chlorophyll-a, particulate organic carbon (POC), and nutrients (phosphate, silicate, ammonium and nitrate). The POC tends to be depth-dependent. The values of δ13C are −23.56, −24.30 and −24.06‰ for 5, 100 and 300 m depths, respectively. We found that POM tended to be isotopically lighter with increasing POC and chl-a, especially in the surface water, potentially due to the preferential lighter carbon isotope for metabolism by the primary producer. The origin of POM in the Southwestern Sumatran waters is marine end-member in the surface (up to 100 m depth) and mixed compositions at the surface of twilight zone (100–300 m depth). The next layer, i.e. twilight zone (more than 300 m depth), is terrigenous end-member. The surface POM of SSW, as shown in 5 m depth, is not freshly produced and tends to be either autochthonous or allochthonous.

https://doi.org/10.29037/ajstd.555
pdf

References

Arı́stegui J, Duarte CM, Agustı́ S, Doval M, Álvarez-Salgado XA, Hansell DA. 2002. Dissolved organic carbon support of respiration in the dark ocean. Science. 298(5600):1967–1967. doi:10.1126/science.1076746.

Boyd PW, Sherry ND, Berges JA, Bishop JKB, Calvert SE, Charette MA, Giovannoni SJ, Goldblatt R, Harrison PJ, Moran SB, et al. 1999. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res, Part II. 46(11):2761–2792. doi:10.1016/S0967-0645(99)00083-1.

Carter JF, Barwick VJ, editors. 2011. Good practice guide for isotope ratio mass spectrometry. 1st edition. Bristol: FIRMS.

Cavan EL, Trimmer M, Shelley F, Sanders R. 2017. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat Commun. 8(1):1–9. doi:10.1038/ncomms14847.

Cifuentes LA, Sharp JH, Fogel ML. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary: Carbon and nitrogen isotopes. Limnol Oceanogr. 33(5):1102–1115. doi:10.4319/lo.1988.33.5.1102.

Cochlan W, Hendorn J. 2012. Water quality methods. Tiburon: Romberg Tiburon Center for Environmental Studies, San Fransisco State University.

Gilhooly WP, Macko SA, Flemings PB, Behrman JH, John CM. 2008. Data report: isotope compositions of sedimentary organic carbon and total nitrogen from Brazos-Trinity Basin IV (Sites U1319 and U1320) and Ursa Basin (Sites U1322 and U1324), deepwater Gulf of Mexico. Proceedings of the Integrated Ocean Drilling Program. College Station: Integrated Ocean Drilling Program Management International. p. 1–11.

Harmelin-Vivien M, Loizeau V, Mellon C, Beker B, Arlhac D, Bodiguel X, Ferraton F, Hermand R, Philippon X, Salen-Picard C. 2008. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont Shelf Res. 28(15):1911–1919. doi:10.1016/j.csr.2008.03.002.

Hirose K, Saito T, Lee SH, Gastaud J. 2011. Vertical distributions of the strong organic ligand in the twilight zone of southern hemisphere ocean particulate matter. Prog Oceanogr. 89(1):108–119. doi:10.1016/j.pocean.2010.12.011.

Hirose K, Tanoue E. 1998. The vertical distribution of the strong ligand in particulate organic matter in the North Pacific. Mar Chem. 59(3):235–252. doi:10.1016/S0304-4203(97)00095-9.

Hood RR, Naqvi SWA, Wiggert JD, Landry MR, Rixen T, Beckley LE, Goyet C, Cowie GL, Maddison LM. 2011. Sustained Indian Ocean biogeochemistry and ecosystem research (SIBER): A basin wide ecosystem program – Science Plan and Implementation Strategy. Technical report. Indian National Center for Ocean Information Services (INCOIS). Hyderabad.

Hwang J, Montluçon DB, Pilskaln CH, Eglinton TI. 2013. Molecular and isotopic insights into particulate organic carbon sources and dynamics in Jordan Basin, Gulf of Maine. Cont Shelf Res. 68:15–22. doi:10.1016/j.csr.2013.08.005.

Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K. 2005. Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser. 287:251–253. doi:10.3354/meps287251.

Kaiser D, Unger D, Qiu G. 2014. Particulate organic matter dynamics in coastal systems of the northern Beibu Gulf. Cont Shelf Res. 82:99–118. doi:10.1016/j.csr.2014.04.006.

Lara RJ, Alder V, Franzosi CA, Kattner G. 2010. Characteristics of suspended particulate organic matter in the southwestern Atlantic: influence of temperature, nutrient and phytoplankton features on the stable isotope signature. J Mar Syst. 79(1-2):199–209. doi:10.1016/j.jmarsys.2009.09.002.

Letscher RT, Moore JK, Teng YC, Primeau F. 2015. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model. Biogeosciences. 12(1):209–221. doi:10.5194/bg-12-209-2015.

Liu KK, Kao SJ, Hu HC, Chou WC, Hung GW, Tseng CM. 2007a. Carbon isotopic composition of suspended and sinking particulate organic matter in the northern South China Sea—from production to deposition. Deep Sea Res, Part II. 54(14-15):1504–1527. doi:10.1016/j.dsr2.2007.05.010.

Liu KK, Kao SJ, Wen LS, Chen KL. 2007b. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Sci Total Environ. 382(1):103–120. doi:10.1016/j.scitotenv.2007.04.01

Martiny AC, Vrugt JA, Lomas MW. 2014. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci Data. 1(1). doi:10.1038/sdata.2014.48.11.

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36. doi:10.1016/S0003-2670(00)88444-5.

Otero E, Culp R, Noakes JE, Hodson RE. 2000. Allocation of particulate organic carbon from different sources in two contrasting estuaries of southeastern USA. Limnol Oceanogr. 45(8):1753–1763. doi:10.4319/lo.2000.45.8.1753.

Parsons TR, Maita Y, Lalli CM. 1984. A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

Post DM. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology. 83(3):703–718. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2.

Sanders R, Henson SA, Koski M, De La Rocha CL, Painter SC, Poulton AJ, Riley J, Salihoglu B, Visser A, Yool A, Bellerby R, Martin AP. 2014. The biological carbon pump in the North Atlantic. Prog Oceanogr. 129:200–218. doi:10.1016/j.pocean.2014.05.005.

Sarma VVSS, Krishna MS, Prasad VR, Kumar BSK, Naidu SA, Rao GD, Viswanadham R, Sridevi T, Kumar PP, Reddy NPC. 2014. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon. Journal of Geophysical Research: Biogeosciences. 119(11):2095–2111. doi:10.1002/2014JG002721.

Schott FA, Xie SP, McCreary JP. 2009. Indian Ocean circulation and climate variability. Rev Geophys. 47(1). doi:10.1029/2007RG000245.

Strickland JD, Parsons TR. 1972. A practical handbook of seawater analysis. 2nd edition. Bulletin 167. Ottawa: Fisheries Research Board of Canada.

Susanto RD, Gordon AL, Zheng Q. 2001. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys Res Lett. 28(8):1599–1602. doi:10.1029/2000GL011844.

Turner JT. 2015. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 130:205–248. doi:10.1016/j.pocean.2014.08.005.

Wahyudi AJ, Iskandar MR, Rachman A, Meirinawati H, Darmayati Y. 2015. Exploring Eastern Indian Ocean through E-WIN: a contribution to IIOE-2. The Indian Ocean Bubble 2. (3):11–12.

Wahyudi AJ, Wada S, Aoki M, Hama T. 2013. Stable isotope signature and pigment biomarker evidence of the diet sources of Gaetice depressus (Crustacea: Eubrachyura: Varunidae) in a boulder shore ecosystem. Plankton Benthos Res. 8(2):55–67. doi:10.3800/pbr.8.55.

Wassmann P. 1997. Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia. 363(1):29–57. doi:10.1023/A:1003113403096.

Yu W, Hood R, D’Adamo N, McPhaden M, Adi R, Tisiana R, Kuswardani D, Feng M, Ivey G, Lee T, et al. 2016. Eastern Indian Ocean Upwelling Research Initiative (EIOURI) Science Plan: The EIOURI Science Plan. Technical report. ESSO - Indian National Centre for Ocean Information Services. Hyderabad.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.