Two Approaches to Measure Trace Metals Fluxes at the Sediment–Water Interface: Sediment Porewater Profile and Benthic Incubation


Benthic fluxes
Overlying water
Trace metals


The biogeochemical cycle of trace metals is very likely affected by the global change in the ocean, especially due to the increasing of sea surface temperature and acidity. Thus, assessing biogeochemical cycle of trace metals will beneficial in elucidating the potential impact of climate change as well as ocean acidification. The assessment of the biogeochemical cycle of trace metals can be performed by measuring trace metals fluxes crossing the sediment–water interface. The main challenge in this measurement is the difficulty of measuring metal concentrations at trace levels due to either physical factors or biological factors that can affect the total flux. Sediment porewater profile and in situ benthic incubation are the two most commonly used methods for measuring trace metals fluxes from sediment to the overlying water or vice versa. The coefficient of diffusion and gradient of concentration are the two most important values in the sediment porewater profile method, while the constant volume involved in the container during the experiment is an important part of the in situ benthic incubation method. The purpose of this review is to provide an overview of both measurement methods deeply and predict the challenges faced in its implementation in Indonesia.


Berner RA. 1976. The Benthic boundary layer from the viewpoint of a geochemist. In: McCave I, editor. The Benthic boundary layer. Boston: Springer US. p. 33–55. doi:10.1007/978-1-4615-8747-7_3.

Black FJ, Gallon C, Flegal AR. 2008. Sediment retention and release. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Oxford: Academic Press. p. 3172–3181. doi:10.1016/B978-008045405-4.00294-9.

Budianto F, Lestari. 2018. Trace metal in sediment from a deep-sea floor of Makassar Strait. IOP Conf Ser: Earth Environ Sci. 118(1):12057. doi:10.1088/1755-1315/118/1/012057.

Buesseler KO, Antia AN, Chen M, Fowler SW, Gardner WD, Gustafsson O, Harada K, Michaels AF, van der Loeff MR, Sarin M, Steinberg DK, Trull T. 2007. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J Mar Res. 65(3):345–416. doi:10.1357/002224007781567621.

Cheng D, Song J, Zhao X, Wang S, Lin Q, Peng J, Su P, Deng W. 2019. Effects of chironomid larvae and Limnodrilus hoffmeisteri bioturbation on the distribution and flux of chromium at the sediment-water interface. J Environ Manage. 245:151–159. doi:10.1016/j.jenvman.2019.05.083.

Ciceri G, Maran C, Martinotti W, Queirazza G. 1992. Geochemical cycling of heavy metals in a marine coastal area: benthic flux determination from pore water profiles and in situ measurements using benthic chambers. Hydrobiologia. 235-236(1):501–517. doi:10.1007/BF00026238.

Croot PL, Heller MI, Wuttig K. 2019. Redox processes impacting the flux of Iron(II) from shelf sediments to the OMZ along the Peruvian shelf. ACS Earth Space Chem. 3(4):537–549. doi:10.1021/acsearthspacechem.8b00203.

Duan L, Song J, Liang X, Yin M, Yuan H, Li X, Ren C, Zhou B, Kang X, Yin X. 2019. Dynamics and diagenesis of trace metals in sediments of the Changjiang Estuary. Sci Total Environ. 675:247–259. doi:10.1016/j.scitotenv.2019.04.190.

Emili A, Acquavita A, Covelli S, Spada L, Di Leo A, Giandomenico S, Cardellicchio N. 2016. Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto’s Mar Piccolo (Ionian Sea, Southern Italy). Environ Sci Pollut Res. 23(13):12582–12595. doi:10.1007/s11356-015-5281-1.

Frogner-Kockum P, Kononets M, Apler A, Hall POJ, Snowball I. 2020. Less metal fluxes than expected from fibrous marine sediments. Mar Pollut Bull. 150:110750. doi:10.1016/j.marpolbul.2019.110750.

Hammond DE, Cummins KM, McManus J, Berelson WM, Smith G, Spagnoli F. 2004. Methods for measuring benthic nutrient flux on the California Margin: Comparing shipboard core incubations to in situ lander results. Limnol Oceanogr Methods. 2(6):146–159. doi:10.4319/lom.2004.2.146.

Han J, Ro HM, Cho KH, Kim KW. 2016. Fluxes of nutrients and trace metals across the sediment-water interface controlled by sediment-capping agents: bentonite and sand. Environ Monit Assess. 188(10):1–11. doi:10.1007/s10661-016-5583-x.

He Y, Men B, Yang X, Li Y, Xu H, Wang D. 2019. Relationship between heavy metals and dissolved organic matter released from sediment by bioturbation/bioirrigation. J Environ Sci. 75:216–223. doi:10.1016/j.jes.2018.03.031.

Henderson GM, Anderson RF, Adkins J, Anderson P, Boyle EA, Cutter G, Zhang J. 2007. GEOTRACES - An international study of the global marine biogeochemical cycles of trace elements and their isotopes. Geochemistry. 67(2):85–131. doi:10.1016/j.chemer.2007.02.001.

Hoffmann LJ, Breitbarth E, Boyd PW, Hunter KA. 2012. Influence of ocean warming and acidification on trace metal biogeochemistry. Mar Ecol Prog Ser. 470:191–205. doi:10.3354/meps10082.

Homoky WB, Weber T, Berelson WM, Conway TM, Henderson GM, Van Hulten M, Jeandel C, Severmann S, Tagliabue A. 2016. Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review. Philos Trans R Soc. A. 374(2081):20160246. doi:10.1098/rsta.2016.0246.

Kalnejais LH, Martin WR, Bothner MH. 2015. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes. Sci Total Environ. 517:178–194. doi:10.1016/j.scitotenv.2015.02.011.

Kamua JN, Dehairs F, Marteen L, Kazunga J. 2007. Sediment-water exchange of selected heavy metals at the backwaters of Makupa Creek, Kenya. West Indian J Mar Sci. 5(2):153–162. doi:10.4314/wiojms.v5i2.28507.

Kang JH, Lee YG, Lee KY, Cha SM, Cho KH, Lee YS, Ki SJ, Yoon IH, Kim KW, Kim JH. 2009. Factors affecting metal exchange between sediment and water in an estuarine reservoir: A spatial and seasonal observation. J Environ Manage. 11(11):2058–2067. doi:10.1039/b910526c.

Kolibongso D, Prartono T, Arman A. 2017. Trace metals distribution in aediment fractions of Karimata Strait, Indonesia. ILMU KELAUTAN: Indones J Mar Sci. 22(4):174. doi:10.14710/ik.ijms.22.4.174-184.

Li L, Zhen X, Wang X, Ren Y, Hu L, Bai Y, Liu J, Shi X. 2020. Benthic trace metal fluxes in a heavily contaminated bay in China: Does the sediment become a source of metals to the water column? Environ Pollut. 257:113494. doi:10.1016/j.envpol.2019.113494.

Little SH, Vance D, Walker-Brown C, Landing WM. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim Cosmochim Acta. 125:673–693. doi:10.1016/j.gca.2013.07.046.

Liu B, Zhang W, Chi G. 2019. Distribution and risk assessment of heavy metals in sediment from Bohai Bay, China. Minerals. 9(2):111. doi:10.3390/min9020111.

Ni Z, Zhang L, Yu S, Jiang Z, Zhang J, Wu Y, Zhao C, Liu S, Zhou C, Huang X. 2017. The porewater nutrient and heavy metal characteristics in sediment cores and their benthic fluxes in Daya Bay, South China. Mar Pollut Bull. 124(1):547–554. doi:10.1016/j.marpolbul.2017.07.069.

Ololade I, Lajide L, Ololade O, Adeyemi O. 2011. Metal partitioning in sediment pore water from the Ondo coastal region, Nigeria. Toxicol Environ Chem. 93(6):1098–1110. doi:10.1080/02772248.2011.575784.

Pohl C, Löffler A, Hennings U. 2004. A sediment trap flux study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57°19.20?N; 20°03.00?E). Mar Chem. 84(3-4):143–160. doi:10.1016/j.marchem.2003.07.002.

Point D, Monperrus M, Tessier E, Amouroux D, Chauvaud L, Thouzeau G, Jean F, Amice E, Grall J, Leynaert A, Clavier J, Donard OFX. 2007. Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France). Estuarine Coastal Shelf Sci. 72(3):457–471. doi:10.1016/j.ecss.2006.11.013.

Riedel GF, Sanders JG, Osman RW. 1997. Biogeochemical control on the flux of trace elements from estuarine sediments: Water column oxygen concentrations and benthic infauna. Estuarine Coastal Shelf Sci. 44(1):23–38. doi:10.1006/ecss.1996.0114.

Rigaud S, Radakovitch O, Couture RM, Deflandre B, Cossa D, Garnier C, Garnier JM. 2013. Mobility and fluxes of trace elements and nutrients at the sediment-water interface of a lagoon under contrasting water column oxygenation conditions. Appl Geochem. 31:35–51. doi:10.1016/j.apgeochem.2012.12.003.

Riyadi AS, Itai T, Isobe T, Ilyas M, Sudaryanto A, Setiawan IE, Takahashi S, Tanabe S. 2012. Spatial profile of trace elements in marine sediments from Jakarta Bay, Indonesia. In: Kawaguchi M, Misaki K, Sato H, Yokokawa T, Itai T, Nguyen TM, Ono J, Tanabe S, editors. Interdisciplinary studies on environmental chemistry—environmental pollution and ecotoxicology. Tokyo: TERRAPUB. p. 141–150.

Roth F, Wild C, Carvalho S, Rädecker N, Voolstra CR, Kürten B, Anlauf H, El?Khaled YC, Carolan R, Jones BH. 2019. An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol Evol. 10(5):712–725. doi:10.1111/2041-210X.13151.

Sabé R, Rauret G. 2004. Challenges for achieving traceability of analytical measurements of heavy metals in environmental samples by isotopic dilution mass spectrometry. Trends Anal Chem. 23(3):273–280. doi:10.1016/S0165-9936(04)00311-5.

Santos-Echeandia J, Prego R, Cobelo-García A, Millward GE. 2009. Porewater geochemistry in a Galician Ria (NW Iberian Peninsula): Implications for benthic fluxes of dissolved trace elements (Co, Cu, Ni, Pb, V, Zn). Mar Chem. 117(1-4):77–87. doi:10.1016/j.marchem.2009.05.001.

Shi X, Mason RP, Charette MA, Mazrui NM, Cai P. 2018. Mercury flux from salt marsh sediments: Insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochim Cosmochim Acta. 222:569–583. doi:10.1016/j.gca.2017.10.033.

Siregar TH, Priyanto N, Putri AK, Rachmawati N, Triwibowo R, Dsikowitzky L, Schwarzbauer J. 2016. Spatial distribution and seasonal variation of the trace hazardous element contamination in Jakarta Bay, Indonesia. Mar Pollut Bull. 110(2):634–646. doi:10.1016/j.marpolbul.2016.05.008.

Spagnoli F, Penna P, Giuliani G, Masini L, Martinotti V. 2019. The AMERIGO Lander and the Automatic Benthic Chamber (CBA): two new instruments to measure benthic fluxes of dissolved chemical species. Sensors. 19(11):2632. doi:10.3390/s19112632.

Viana P, Yin K, Rockne K. 2018. Comparison of direct benthic flux to ebullition-facilitated flux of polycyclic aromatic hydrocarbons and heavy metals measured in the field. J Soils Sediments. 18(4):1729–1742. doi:10.1007/s11368-017-1893-z.

Vieira LH, Achterberg EP, Scholten J, Beck AJ, Liebetrau V, Mills MM, Arrigo KR. 2019. Benthic fluxes of trace metals in the Chukchi Sea and their transport into the Arctic Ocean. Mar Chem. 208:43–55. doi:10.1016/j.marchem.2018.11.001.

Viollier E, Rabouille C, Apitz SE, Breuer E, Chaillou G, Dedieu K, Furukawa Y, Grenz C, Hall P, Janssen F, Morford JL, Poggiale JC, Roberts S, Shimmield T, Taillefert M, Tengberg A, Wenzhöfer F, Witte U. 2003. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey. J Exp Mar Biol Ecol. 285-286:5–31. doi:10.1016/S0022-0981(02)00517-8.

Wang W, Wang WX. 2017. Trace metal behavior in sediments of Jiulong River Estuary and implication for benthic exchange fluxes. Environ Pollut. 225:598–609. doi:10.1016/j.envpol.2017.03.028.

Widianarko B, Verweij RA, Van Gestel CA, Van Straalen NM. 2000. Spatial distribution of trace metals in sediments from urban streams of Semarang, Central Java, Indonesia. Ecotoxicol Environ Saf. 46(1):95–100. doi:10.1006/eesa.1999.1878.

Zago C, Capodaglio G, Ceradini S, Ciceri G, Abelmoschi L, Soggia F, Cescon P, Scarponi G. 2000. Benthic fluxes of cadmium, lead, copper and nitrogen species in the northern Adriatic Sea in front of the River Po outflow, Italy. Sci Total Environ. 246(2-3):121–137. doi:10.1016/S0048-9697(99)00421-0.

Zhu X, Shan B, Tang W, Li S, Rong N. 2016. Distributions, fluxes, and toxicities of heavy metals in sediment porewater from tributaries of the Ziya River system, northern China. Environ Sci Pollut Res. 23(6):5516–5526. doi:10.1007/s11356-015-5709-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)


Download data is not yet available.