Manuka Honey Reduces the Virulence of Pectobacterium brasiliense by Suppressing Genes That Encode Plant Cell Wall-Degrading Enzymes


Gene expression
Soft rot


The primary virulence of soft rot pectobacteria, including Pectobacterium brasiliense, is mainly determined by the massive production of plant cell wall-degrading enzymes (PCWDEs), which promote plant tissue maceration in many crops. The antibiotic treatment to treat bacterial soft rot causes environmental problems and potentially affects resistance. Antibiotic resistance is driving interest in antimicrobial treatments, and no organism has been reported to have acquired resistance to honey. However, the use of honey as a therapeutic agent for plant bacterial pathogens has rarely been studied. Therefore, this study was undertaken to determine the in vitro effect of Manuka honey against P. brasiliense at the phenotypic and genotypic levels. A sublethal concentration of honey was determined by a growth inhibition assay in broth medium containing different concentrations of Manuka honey. A macerating assay was performed on orchid leaves, and the activities of the PCWDEs were examined in plate assays. The expression of PCWDE-associated genes was investigated using semi-quantitative reverse transcription-polymerase chain reaction analysis. The exposure of P. brasiliense to a sublethal concentration of Manuka honey significantly decreased the maceration ability of the orchid and the synthesis of PCWDEs, i.e., pectate lyase, polygalacturonase, and protease. Moreover, five PCWDEs-encoding genes, such as pelA, pelB, pelC, pehA, and prtW, had lower expression levels after the honey treatment compared with recA as the internal standard. The honey treatment decreased the virulence of P. brasiliense associated with the synthesis of PCWDEs. Therefore, Manuka honey reduced virulence by suppressing the expression of the PCWDE genes.


Almasaudi SB, Al-Nahari AAM, El-Ghany ESMA, Barbour E, Muhayawi SMA, Al-Jaouni S, Azhar E, Qari M, Qari YA, Harakeh S. 2017. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi Journal of Biological Sciences. 24(6):1255–1261. doi:10.1016/j.sjbs.2016.08.007.

Carter DA, Blair SE, Cokcetin NN, Bouzo D, Brooks P, Schothauer R, Harry EJ. 2016. Therapeutic Manuka Honey: No Longer So Alternative. Frontiers in Microbiology. 7. doi:10.3389/fmicb.2016.00569.

Charkowski AO. 2018. The Changing Face of Bacterial Soft-Rot Diseases. Annual Review of Phytopathology. 56(1):269–288. doi:10.1146/annurev-phyto-080417-045906.

Fauzia RA, Joko T. 2021. Characterization of Pto-like Protein Kinase Disease Resistance Genes in Orchid. Asian Journal of Plant Sciences. 20(2):281–290. doi:10.3923/ajps.2021.281.290.

Israili ZH. 2014. Antimicrobial Properties of Honey. American Journal of Therapeutics. 21(4):304–323. doi:10.1097/MJT.0b013e318293b09b.

Jenkins R, Burton N, Cooper R. 2011. Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy. 66(11):2536–2542. doi:10.1093/jac/dkr340.

Jenkins R, Burton N, Cooper R. 2014. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. Journal of Antimicrobial Chemotherapy. 69(3):603–615. doi:10.1093/jac/dkt430.

Joko T, Soffan A, Rohman MS. 2019. A novel subspecies-specific primer targeting the gyrase B gene for the detection of Pectobacterium carotovorum subsp. brasiliense. Biodiversitas Journal of Biological Diversity. 20(10). doi:10.13057/biodiv/d201037.

Joko T, Umehara M, Murata T, Etoh H, Izumori K, Tsuyumu S. 2018. Hyperinduction of pectate lyase in Dickeya chrysanthemi EC16 by plant-derived sugars. Journal of Plant Interactions. 13(1):141–150. doi:10.1080/17429145.2018.1444206.

Joshi JR, Khazanov N, Senderowitz H, Burdman S, Lipsky A, Yedidia I. 2016. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to Exp I and Exp R proteins. Scientific Reports. 6(1):38126. doi:10.1038/srep38126.

Kwenda S, Motlolometsi TV, Birch PRJ, Moleleki LN. 2016. RNA-seq Profiling Reveals Defense Responses in a Tolerant Potato Cultivar to Stem Infection by Pectobacterium carotovorum ssp. brasiliense. Frontiers in Plant Science. 7. doi:10.3389/fpls.2016.01905.

Lee DH, Kim J-B, Lim J-A, Han S-W, Heu S. 2014. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea. The Plant Pathology Journal. 30(2):117–124. doi:10.5423/PPJ.OA.12.2013.0117.

Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg M-B, Birch PRJ, et al. 2008. Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium atrosepticum. PLoS Pathogens. 4(6):e1000093. doi:10.1371/journal.ppat.1000093.

Ma B, Hibbing ME, Kim H-S, Reedy RM, Yedidia I, Breuer Jane, Breuer Jeffrey, Glasner JD, Perna NT, Kelman A, et al. 2007. Host Range and Molecular Phylogenies of the Soft Rot Enterobacterial Genera Pectobacterium and Dickeya. Phytopathology®. 97(9):1150–1163. doi:10.1094/PHYTO-97-9-1150.

Maddocks SE, Lopez MS, Rowlands RS, Cooper RA. 2012. Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology. 158(3):781–790. doi:10.1099/mic.0.053959-0.

Mattinen L, Nissinen R, Riipi T, Kalkkinen N, Pirhonen M. 2007. Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. PROTEOMICS. 7(19):3527–3537. doi:10.1002/pmic.200600759.

Mavric E, Wittmann S, Barth G, Henle T. 2008. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium)honeys from New Zealand. Molecular Nutrition & Food Research. 52(4):483–489. doi:10.1002/mnfr.200700282.

Okhiria OA, Henriques AFM, Burton NF, Peters A, Cooper R. 2009. Honey modulates biofilms of Pseudomonas aeruginosain a time and dose dependent manner. Journal of ApiProduct and ApiMedical Science. 1(1):6–10. doi:10.3896/IBRA.

Popovi? T, Kosti? I, Mili?evi? Z, Gaši? K, Kosti? M, Derviševi? M, Krnjaji? S. 2017. Essential oils as an alternative bactericides against soft-rot bacteria, Pectobacterium carotovorum subsp. carotovorum. In: VIII International Scientific Agriculture Symposium, “Agrosym 2017”, Jahorina, Bosnia and Herzgovina, October 2017. Book of Proceedings. Faculty of Agriculture, University of East Sarajevo. p. 1377–1383.

Priyadarshini R, Pedro MA de, Young KD. 2007. Role of Peptidoglycan Amidases in the Development and Morphology of the Division Septum in Escherichia coli. Journal of Bacteriology. 189(14):5334–5347. doi:10.1128/JB.00415-07.

Roberts AEL, Maddocks SE, Cooper RA. 2015. Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. Journal of Antimicrobial Chemotherapy. 70(3):716–725. doi:10.1093/jac/dku448.

Rückriemen J, Klemm O, Henle T. 2017. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Food Chemistry. 230:540–546. doi:10.1016/j.foodchem.2017.03.075.

Saarilahti HT, Pirhonen M, Karlsson M-B, Flego D, Palva ET. 1992. Expression of pehA-bla gene fusions in Erwinia carotovora subsp. carotovora and isolation of regulatory mutants affecting polygalacturonase production. Molecular and General Genetics MGG. 234(1):81–88. doi:10.1007/BF00272348.

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9(7):671–675. doi:10.1038/nmeth.2089.

Sharkey FH, Banat IM, Marchant R. 2004. Detection and Quantification of Gene Expression in Environmental Bacteriology. Applied and Environmental Microbiology. 70(7):3795–3806. doi:10.1128/AEM.70.7.3795-3806.2004.

Silva AS, Luz JMQ, Tebaldi ND, Morais TP de. 2020. Diversity of Pectobacterium strains by biochemical, physiological, and molecular characterization. Bioscience Journal. 36(2). doi:10.14393/BJ-v36n2a2020-46256.

Sundin GW, Wang N. 2018. Antibiotic Resistance in Plant-Pathogenic Bacteria. Annual Review of Phytopathology. 56(1):161–180. doi:10.1146/annurev-phyto-080417-045946.

Trianom B, Arwiyanto T, Joko T. 2019. Morphological and Molecular Characterization of Sumatra Disease of Clove in Central Java, Indonesia. Tropical Life Sciences Research. 30(2):107–118. doi:10.21315/tlsr2019.30.2.8.

Widyaningsih S, Utami SNH, Joko T, Subandiyah S. 2019. Plant response and huanglongbing disease development against heat treatments on ‘Siam Purworejo’ (Citrus nobilis (Lour)) and ‘Nambangan’ (C. maxima (Burm.) Merr.) under field condition. Archives of Phytopathology and Plant Protection. 52(3–4):259–276. doi:10.1080/03235408.2018.1544193.

Zhang D, Zhou Y, Zhao D, Zhu J, Yang Z, Zhu M. 2017. Complete genome sequence and pathogenic genes analysis of Pectobacterium atroseptica JG10-08. Genes & Genomics. 39(9):945–955. doi:10.1007/s13258-017-0559-y.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 The Author(s)


Download data is not yet available.