Design of High Gain and Improved Front-to-Back Ratio Multilayer Microstrip Patch Antenna using Modified Feed Line
PDF

Keywords

Bandwidth
Front-to-back ratio
Gain
Multilayer
Modified feed line

Abstract

A novel high gain miniaturized rectangular microstrip patch antenna is proposed with a high front-to-back ratio (FBR) using a modified feed line and two single-sided substrate layers to operate at 2.4 GHz frequency. The feed line is modified using a step impedance technique to achieve resonance at the operating frequency. The matched impedance of the feed line helps achieve enhanced bandwidth and antenna miniaturization. The substrate layers are introduced to achieve an enhanced gain and FBR of 6.329 dBi and 27.64 dB, respectively. The impedance bandwidths of 106.9 and 94.1 MHz are achieved for the two separate designs. These proposed designs have a total circuit area occupancy of 0.4 ?0 × 0.304 ?0. The antenna has been designed and fabricated using FR4 substrate material. The measured results are in good agreement with the simulated results.

https://doi.org/10.29037/ajstd.772
PDF

References

Alam MS, Abbosh AM. 2016. Beam-Steerable Planar Antenna Using Circular Disc and Four PIN-Controlled Tapered Stubs for WiMAX and WLAN Applications. Antennas Wirel Propag Lett. 15:980–983. doi:10.1109/LAWP.2015.2489684.

Balanis CA. 2016. Antenna theory: analysis and design. Fourth edition. Hoboken, New Jersey: Wiley.

Cao Y, Cai Y, Cao W, Xi B, Qian Z, Wu T, Zhu L. 2019. Broadband and High-Gain Microstrip Patch Antenna Loaded With Parasitic Mushroom-Type Structure. Antennas Wirel Propag Lett. 18(7):1405–1409. doi:10.1109/LAWP.2019.2917909.

DeJean GR, Tentzeris MM. 2007. A New High-Gain Microstrip Yagi Array Antenna With a High Front-to-Back (F/B) Ratio for WLAN and Millimeter-Wave Applications. IEEE Trans Antennas Propagat. 55(2):298–304. doi:10.1109/TAP.2006.889818.

Gangwar D, Das S, Yadava RL. 2017. Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate. Wireless Pers Commun. 96(2):2389–2399. doi:10.1007/s11277-017-4303-3.

Guo E, Liu J, Long Y. 2017. A Mode-Superposed Microstrip Patch Antenna and Its Yagi Array With High Front-to-Back Ratio. IEEE Trans Antennas Propagat. 65(12):7328–7333. doi:10.1109/TAP.2017.2759962.

Hu H-T, Chen F-C, Chu Q-X. 2016. A Compact Directional Slot Antenna and Its Application in MIMO Array. IEEE Trans Antennas Propagat. 64(12):5513–5517. doi:10.1109/TAP.2016.2621021.

Kajiwara A. 1994. Effects of cell size, directional antennas, diversity and shadowing on indoor radio CDMA capacity. In: 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks - Catching the Mobile Future. Vol. 1. The Hague, Netherlands: IOS Press. p. 60–64. [accessed 2022 Aug 9]. http://ieeexplore.ieee.org/document/530766/.

Kelothu B, Subhashini KR, Manohar GL. 2012. A compact high-gain microstrip patch antenna for dual band WLAN applications. In: 2012 Students Conference on Engineering and Systems. Allahabad, Uttar Pradesh, India: IEEE. p. 1–5. [accessed 2022 Aug 9]. http://ieeexplore.ieee.org/document/6199010/.

Lestari AA, Yarovoy AG, Ligthart LP. 2005. Adaptive wire bow-tie antenna for GPR applications. IEEE Trans Antennas Propagat. 53(5):1745–1754. doi:10.1109/TAP.2005.846726.

Liang H-Y, Yang H-C, Hou J, Cai L-Y. 2013. A Compact Ferrite-Based Dipole Directional Antenna for Borehole Radar Application. IEEE Geosci Remote Sensing Lett. 10(3):486–489. doi:10.1109/LGRS.2012.2210671.

Mandal K, Sarkar PP. 2013. A compact high gain microstrip antenna for wireless applications. AEU - International Journal of Electronics and Communications. 67(12):1010–1014. doi:10.1016/j.aeue.2013.06.001.

Srivastava H, Singh A, Rajeev A, Tiwari U. 2020. Bandwidth and Gain Enhancement of Rectangular Microstrip Patch Antenna (RMPA) Using Slotted Array Technique. Wireless Pers Commun. 114(1):699–709. doi:10.1007/s11277-020-07388-x.

Wang C-J, Dai Y. 2012. Enhancement of pattern directivity for the open slot antenna by utilizing array topology. Microw Opt Technol Lett. 54(5):1273–1277. doi:10.1002/mop.26782.

Zheng-Shu Zhou, Boerner W-M, Sato M. 2004. Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring. IEEE Trans Geosci Remote Sensing. 42(9):1803–1810. doi:10.1109/TGRS.2004.832248.

Zhu H, Wang Y, Abbosh AM. 2015. Broadband microwave crossover using parallel?coupled microstrip lines and short?ended stubs. IET Microwaves, Antennas & Propagation. 9(1):79–85. doi:10.1049/iet-map.2014.0088.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 The Author(s)

Downloads

Download data is not yet available.