Hydrogeochemical Analysis of Unconfined Groundwater in the Surrounding Salt Farming Areas of Pademawu, Madura, Indonesia
PDF

Keywords

Groundwater pollution
Hydrogeochemistry
Pademawu coast
Salt farming

Abstract

The Pademawu coast has rapidly transformed into salt ponds, causing seawater intrusion and pollution. This study aims to examine the quality of groundwater in the surrounding settlement area of Pademawu and assess its eligibility for daily use. The psychochemical parameters of groundwater are measured in situ. Groundwater samples from several stations are analyzed in the laboratory and used to collect several chemical compounds, including Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO42-, Fe2+, Mn2+, F-, NO2-, NO3, and CaCO3. The detected concentrations are then used to calculate TH, sodium adsorption ratio (SAR), %Na, PI, KR, and MH. Hydrochemical calculation and interpretation are also performed. The groundwater characteristics are determined according to TDS, conductivity, and water quality index (WQI). Results showed that the groundwater facies are predominated by Ca-HCO3 (50%) in the northern and middle study areas and Na-Cl (37%) in the salt farming area. The groundwater is categorized as SAR (C2S1) in the north and SAR (C4S2) in the south. The primary groundwater consists of Na+ and Cl- (dominant cation and anion) originating from salt farming. The TDS in the salt farming area ranges from 1000 mg/L to 3000 mg/L (slightly saline). The WQI ranges from 39.0 to 735.4, which encompasses excellent water, good water, very poor water, and unsuitable for consumption. Salt farming infiltration toward unconfined aquifers is the primary factor causing groundwater pollution. Mitigation efforts to minimize scattered infiltration must be applied in the Pademawu Subdistrict by modifying the system between salt farming and settlement areas.

https://doi.org/10.29037/ajstd.793
PDF

References

Abu-alnaeem MF, Yusoff I, Ng TF, Alias Y, Raksmey M. 2018. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of The Total Environment. 615:972–989. doi:10.1016/j.scitotenv.2017.09.320.

Adimalla N, Dhakate R, Kasarla A, Taloor AK. 2020. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development. 10:100334. doi:10.1016/j.gsd.2020.100334.

Adimalla N, Li P, Venkatayogi S. 2018. Hydrogeochemical Evaluation of Groundwater Quality for Drinking and Irrigation Purposes and Integrated Interpretation with Water Quality Index Studies. Environ Process. 5(2):363–383. doi:10.1007/s40710-018-0297-4.

Alfarrah N, Walraevens K. 2018. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water. 10(2):143. doi:10.3390/w10020143.

Aravinthasamy P, Karunanidhi D, Subramani T, Roy PD. 2021. Demarcation of groundwater quality domains using GIS for best agricultural practices in the drought-prone Shanmuganadhi River basin of South India. Environ Sci Pollut Res. 28(15):18423–18435. doi:10.1007/s11356-020-08518-5.

Aris AZ, Praveena SM, Abdullah MH. 2012. The Influence of Seawater on the Chemical Composition of Groundwater in a Small Island: The Example of Manukan Island, East Malaysia. Journal of Coastal Research. 279:64–75. doi:10.2112/JCOASTRES-D-10-00020.1.

Avtar R, Tripathi S, Aggarwal AK. 2019. Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India. Land. 8(8):124. doi:10.3390/land8080124.

Barlow PM, Reichard EG. 2010. Saltwater intrusion in coastal regions of North America. Hydrogeol J. 18(1):247–260. doi:10.1007/s10040-009-0514-3.

Bhardwaj V, Singh DS. 2011. Surface and groundwater quality characterization of Deoria District, Ganga Plain, India. Environ Earth Sci. 63(2):383–395. doi:10.1007/s12665-010-0709-x.

BPS. 2018. Kecamatan Pademawu dalam Angka 2018 [Pademawu Region in Numbers 2018]. Badan Pusat Statistik. https://pamekasankab.bps.go.id/publication/download.html?nrbvfeve=MTBmYmU2ZGNlNTIyNTdjN2VhYzFmYjIz&xzmn=aHR0cHM6Ly9wYW1la2FzYW5rYWIuYnBzLmdvLmlkL3B1YmxpY2F0aW9uLzIwMTgvMDkvMjYvMTBmYmU2ZGNlNTIyNTdjN2VhYzFmYjIzL2tlY2FtYXRhbi1wYWRlbWF3dS1kYWxhbS1hbmdrYS0yMDE.

Bridgewater LL, Baird RB, Eaton AD, Rice EW, American Public Health Association, American Water Works Association, Water Environment Federation, editors. 2017. Standard methods for the examination of water and wastewater. 23rd edition. Washington, DC: American Public Health Association.

Chidambaram S, Karmegam U, Sasidhar P, Prasanna MV, Manivannan R, Arunachalam S, Manikandan S, Anandhan P. 2011. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India. J Earth Syst Sci. 120(5):897–909. doi:10.1007/s12040-011-0105-2.

Chotpantarat S, Parkchai T, Wisitthammasri W. 2020. Multivariate Statistical Analysis of Hydrochemical Data and Stable Isotopes of Groundwater Contaminated with Nitrate at Huay Sai Royal Development Study Center and Adjacent Areas in Phetchaburi Province, Thailand. Water. 12(4):1127. doi:10.3390/w12041127.

Citrayati N, Antariksa, Titisari EY. 2008. Permukiman Masyarakat Petani Garam Di Desa Pinggir Papas, Kabupaten Sumenep. Arsitektur E-Journal. 1(1):1–14.

Duraisamy S, Govindhaswamy V, Duraisamy K, Krishinaraj S, Balasubramanian A, Thirumalaisamy S. 2019. Hydrogeochemical characterization and evaluation of groundwater quality in Kangayam taluk, Tirupur district, Tamil Nadu, India, using GIS techniques. Environ Geochem Health. 41(2):851–873. doi:10.1007/s10653-018-0183-z.

Dwivedi SL, Pathak V. 2007. A preliminary assignment of water quality index to Mandakini river, Chitrakoot. Indian Journal of Environmental Protection. 27(11):1036–1038.

Efendy M, Sidik RF, Muhsoni FF. 2014. PEMETAAN POTENSI PENGEMBANGAN LAHAN TAMBAK GARAM DI PESISIR UTARA KABUPATEN PAMEKASAN. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology. 7(1). https://journal.trunojoyo.ac.id/jurnalkelautan/article/view/791.

Freeze RA, Cherry JA. 1979. Groundwater. Englewood Cliffs, N.J: Prentice-Hall.

Gemilang WA, Bakti H. 2019. Kerentanan Air Tanah di Kawasan Pertanian Garam Pesisir Pademawu, Madura berdasarkan Karakteristik Hidrogeokimia dan Indeks Kualitas Air. RisGeoTam. 29(1):115. doi:10.14203/risetgeotam2019.v29.1005.

Gopinath S, Srinivasamoorthy K, Vasanthavigar M, Saravanan K, Prakash R, Suma CS, Senthilnathan D. 2018. Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates Evaporites. 33(1):1–13. doi:10.1007/s13146-016-0300-y.

Hajji S, Nasri G, Boughariou E, Bahloul M, Allouche N, Bouri S. 2020. Towards understanding groundwater quality using hydrochemical and statistical approaches: case of shallow aquifer of Mahdia–Ksour Essaf (Sahel of Tunisia). Environ Sci Pollut Res. 27(5):5251–5265. doi:10.1007/s11356-019-06982-2.

He X, Wu J, He S. 2019. Hydrochemical characteristics and quality evaluation of groundwater in terms of health risks in Luohe aquifer in Wuqi County of the Chinese Loess Plateau, northwest China. Human and Ecological Risk Assessment: An International Journal. 25(1–2):32–51. doi:10.1080/10807039.2018.1531693.

Hem JD. 1985. Study and interpretation of the chemical characteristics of natural water. 3rd ed. Reston, VA Water Supply Paper Report No.: 2254. http://pubs.er.usgs.gov/publication/wsp2254.

Huizer S, Radermacher M, de Vries S, Oude Essink GHP, Bierkens MFP. 2018. Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment. Hydrol Earth Syst Sci. 22(2):1065–1080. doi:10.5194/hess-22-1065-2018.

Janardhana Raju N, Shukla UK, Ram P. 2011. Hydrogeochemistry for the assessment of groundwater quality in Varanasi: a fast-urbanizing center in Uttar Pradesh, India. Environ Monit Assess. 173(1–4):279–300. doi:10.1007/s10661-010-1387-6.

Javadi AA, Abd-Elhamid HF, Farmani R. 2012. A simulation-optimization model to control seawater intrusion in coastal aquifers using abstraction/recharge wells: A SIMULATION-OPTIMIZATION MODEL TO CONTROL SEAWATER INTRUSION. Int J Numer Anal Meth Geomech. 36(16):1757–1779. doi:10.1002/nag.1068.

Javadi S, Kardan Moghaddam H, Neshat A. 2022. A new approach for vulnerability assessment of coastal aquifers using combined index. Geocarto International. 37(6):1681–1703. doi:10.1080/10106049.2020.1797185.

Kale SS, Kadam AK, Kumar S, Pawar NJ. 2010. Evaluating pollution potential of leachate from landfill site, from the Pune metropolitan city and its impact on shallow basaltic aquifers. Environ Monit Assess. 162(1–4):327–346. doi:10.1007/s10661-009-0799-7.

Kelly WR. 1997. Heterogeneities in ground-water geochemistry in a sand aquifer beneath an irrigated field. Journal of Hydrology. 198(1–4):154–176. doi:10.1016/S0022-1694(96)03316-1.

Klassen J, Allen DM, Kirste D. 2014. Chemical Indicators of Saltwater Intrusion for the Gulf Islands, British Columbia. Department of Earth Sciences, Simon Fraser University. http://www.sfu.ca/personal/dallen/Chemical Indicators of SWI_Final.pdf.

Krishna kumar S, Logeshkumaran A, Magesh NS, Godson PS, Chandrasekar N. 2015. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl Water Sci. 5(4):335–343. doi:10.1007/s13201-014-0196-4.

Liu J, Feng J, Gao Z, Wang M, Li G, Shi M, Zhang H. 2019. Hydrochemical characteristics and quality assessment of groundwater for drinking and irrigation purposes in the Futuan River Basin, China. Arab J Geosci. 12(18):560. doi:10.1007/s12517-019-4732-2.

Mallick J, Singh C, AlMesfer M, Kumar A, Khan R, Islam S, Rahman A. 2018. Hydro-Geochemical Assessment of Groundwater Quality in Aseer Region, Saudi Arabia. Water. 10(12):1847. doi:10.3390/w10121847.

Manivannan V, Elango L. 2019. Seawater intrusion and submarine groundwater discharge along the Indian coast. Environ Sci Pollut Res. 26(31):31592–31608. doi:10.1007/s11356-019-06103-z.

Matahelumual BC. 2010. Kajian kondisi air tanah Jakarta tahun 2010. Jurnal Lingkungan dan Bencana Geologi. 3(1):131–149.

Muchamad AN, Alam BYCS, Yuningsih ET. 2017. HIDROGEOKIMIA AIRTANAH PADA DAERAH PANTAI: STUDI KASUS DATARAN RENDAH KATAK, DESA SUMBER AGUNG, KABUPATEN BANYUWANGI. JRisGeoTam. 27(1):39. doi:10.14203/risetgeotam2017.v27.442.

Mukate SV, Panaskar DB, Wagh VM, Baker SJ. 2020. Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India. Environ Dev Sustain. 22(4):3207–3238. doi:10.1007/s10668-019-00342-3.

Piper AM. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Trans AGU. 25(6):914. doi:10.1029/TR025i006p00914.

Poespowardoyo RS. 1986. Peta Hidrogeologi Indonesia Lembar VIII Surabaya (Jawa) [Hydrogeological map of Indonesia VIII Surabaya]. Bandung: Direktorat Geologi Tata Lingkungan.

Putranto TT, Putra BR, Marin J. 2019. Groundwater Quality Analysis to Determine Groundwater Facies in Pati-Rembang Groundwater Basin. IOP Conf Ser: Earth Environ Sci. 246:012001. doi:10.1088/1755-1315/246/1/012001.

Raghunath HM. 2003. Ground Water. Second Edition. New Delhi: New Age International (P) Limited Publishers.

Raihan F, Alam J. 2008. Assessment of Groundwater Quality in Sunamganj of Bangladesh. Iranian Journal of Environmental Health, Science and Engineering. 5(3):155–166.

Rajib M, Parveen M, Oguchi CT. 2019. A rapid technique for measuring oxidation-reduction potential for solid materials. J sci technol environ inform. 7(1):510–516. doi:10.18801/jstei.070119.53.

Ramesh T, Manjaiah KM, Tomar JMS, Ngachan SV. 2013. Effect of multipurpose tree species on soil fertility and CO2 efflux under hilly ecosystems of Northeast India. Agroforest Syst. 87(6):1377–1388. doi:10.1007/s10457-013-9645-6.

Rao NS, Rao PS, Reddy GV, Nagamani M, Vidyasagar G, Satyanarayana NLVV. 2012. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess. 184(8):5189–5214. doi:10.1007/s10661-011-2333-y.

Saeedi M, Abessi O, Sharifi F, Meraji H. 2010. Development of groundwater quality index. Environ Monit Assess. 163(1–4):327–335. doi:10.1007/s10661-009-0837-5.

Sahu P, Sikdar PK. 2008. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ Geol. 55(4):823–835. doi:10.1007/s00254-007-1034-x.

Sajil Kumar PJ, Elango L, James EJ. 2014. Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arab J Geosci. 7(7):2641–2653. doi:10.1007/s12517-013-0940-3.

Salman SA, Arauzo M, Elnazer AA. 2019. Groundwater quality and vulnerability assessment in west Luxor Governorate, Egypt. Groundwater for Sustainable Development. 8:271–280. doi:10.1016/j.gsd.2018.11.009.

Salman SA, Shahid S, Mohsenipour M, Asgari H. 2018. Impact of landuse on groundwater quality of Bangladesh. Sustain Water Resour Manag. 4(4):1031–1036. doi:10.1007/s40899-018-0230-z.

Sawyer CN. 1967. Chemistry in Sanitary Engineering. 2nd Edition. New York: Mc-Graw Hill.

Selvakumar S, Ramkumar K, Chandrasekar N, Magesh NS, Kaliraj S. 2017. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Appl Water Sci. 7(1):411–420. doi:10.1007/s13201-014-0256-9.

Setiawan T, P DJ, Brahmantyo B, Irawan DE. 2010. Analisis Hidrokimia Untuk Interpretasi Sistem Hidrogeologi Daerah Kars. Widyariset. 13(3):1–8.

Sheik Mujabar P, Chandrasekar N. 2013. Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Nat Hazards. 69(3):1295–1314. doi:10.1007/s11069-011-9962-x.

Siftianida II, Wijatna AB, Pratikno B. 2017. Aplikasi Isotop Alam untuk Pendugaan Daerah Resapan Air Bagi Mataair Di Kecamatan Cijeruk, Kabupaten Bogor, Jawa Barat. J Ilmiah Aplikasi Isotop dan Radiasi. 12(2):97. doi:10.17146/jair.2016.12.2.2274.

Situmorang RL, Agustianto DA, Suparman M. 1992. Peta Geologi Lembar Waru-Sumenep, Jawa [Geological Map of Waru-Sumenep Java]. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sivakarun N, Udayaganesan P, Chidambaram S, Venkatramanan S, Prasanna MV, Pradeep K, Panda B. 2020. Factors determining the hydrogeochemical processes occurring in shallow groundwater of coastal alluvial aquifer, India. Geochemistry. 80(4):125623. doi:10.1016/j.chemer.2020.125623.

Subba Rao N, Ravindra B, Wu J. 2020. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Human and Ecological Risk Assessment: An International Journal. 26(9):2316–2348. doi:10.1080/10807039.2020.1741338.

Szabolcs I. 1964. The influence of irrigation water of high Sodium Carbonate content on soils. Agrokémia és talajtan. 13:237–246.

Todd DK. 1980. Groundwater hydrology. 2d ed. New York: Wiley.

Wagh VM, Panaskar DB, Muley AA, Mukate SV, Lolage YP, Aamalawar ML. 2016. Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India. Model Earth Syst Environ. 2(4):1–10. doi:10.1007/s40808-016-0250-3.

Wilcox LV. 1955. Classi?cation and use of irrigation waters. Circular N. Washington D C: United State Department of Agriculture.

World Health Organization. 2008. Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda,Vol.1, recommendations. 3rd ed. Geneva: World Health Organization. [accessed 2022 Aug 9]. https://apps.who.int/iris/handle/10665/204411.

Yeti? R, Atasoy AD, Demir Yeti? A, Ye?ilnacar M?. 2019. Hydrogeochemical characteristics and quality assessment of groundwater in Balikligol Basin, Sanliurfa, Turkey. Environ Earth Sci. 78(11):331. doi:10.1007/s12665-019-8330-0.

Yidana SM, Yidana A. 2010. Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci. 59(7):1461–1473. doi:10.1007/s12665-009-0132-3.

Yuan Y, Liu Y, Luo K, Shahid MZ. 2020. Hydrochemical characteristics and a health risk assessment of the use of river water and groundwater as drinking sources in a rural area in Jiangjin District, China. Environ Earth Sci. 79(7):160. doi:10.1007/s12665-020-8900-1.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 The Author(s)

Downloads

Download data is not yet available.