Abstract
One of the state-of-the-art technologies for metal fabrication is laser powder bed fusion, which includes the following printing techniques: selective laser melting, selective laser sintering, direct metal laser sintering, and electron beam melting. This work examines defect formation in laser powder bed fusion, predominately focusing on selective laser melting. It also explores recent research findings on defect formation and classification and analyzes various internal defects, such as porosity, lack of fusion, balling, and solidification cracking. The influence of process parameters on defect formation and the effect of defects on mechanical properties are analyzed. This review also discusses defect inspection technologies (melt pool, scan path, and slice monitoring), defect mitigation strategies (online detection, process parameters, and numerical simulation), and their applications in additive manufacturing, such as laser powder bed fusion. This review would aid manufacturers in determining the root cause of defect formation and developing inspection technologies and mitigation strategies.
References
Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. 2014. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing. 1–4:77–86. doi:10.1016/j.addma.2014.08.001.
Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW, Hernandez J, Collins S, Medina F. 2012. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Materialia. 60(5):2229–2239. doi:10.1016/j.actamat.2011.12.032.
Antonsson T, Fredriksson H. 2005. The effect of cooling rate on the solidification of INCONEL 718. Metall and Materi Trans B. 36(1):85–96. doi:10.1007/s11663-005-0009-0.
Astarita A, Campatelli G, Corigliano P, Epasto G, Montevecchi F, Scherillo F, Venturini G. 2021. Microstructure and mechanical properties of specimens produced using the wire-arc additive manufacturing process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235(10):1788–1798. doi:10.1177/0954406219883324.
Attar H, Calin M, Zhang LC, Scudino S, Eckert J. 2014. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A. 593:170–177. doi:10.1016/j.msea.2013.11.038.
Azadian S, Wei LY, Warren R. 2004. Delta phase precipitation in inconel 718. Materials Characterization. 53(1):7–16. doi:10.1016/j.matchar.2004.07.004.
Bahnini I, Rivette M, Rechia A, Siadat A, Elmesbahi A. 2018. Additive manufacturing technology: the status, applications, and prospects. The International Journal of Advanced Manufacturing Technology. 97(1–4):147–161. doi:10.1007/s00170-018-1932-y.
Barath K, Aravindan KM, Vinoth J, Sampath K. 2021. Effect of post-fabrication treatments on surface residual stresses of additive manufactured stainless steel 316L. FME Transactions. 49(1):87–94. doi:10.5937/fme2101087B.
Bauereiß A, Scharowsky T, Körner C. 2014. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. Journal of Materials Processing Technology. 214(11):2522–2528. doi:10.1016/j.jmatprotec.2014.05.002.
Bayle F, Doubenskaia M. 2008. Selective laser melting process monitoring with high speed infra-red camera and pyrometer. In: Veiko VP, editor. p. 698505-698505–8. [accessed 2022 Aug 31]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=838195.
Bean GE, Witkin DB, McLouth TD, Patel DN, Zaldivar RJ. 2018. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Additive Manufacturing. 22:207–215. doi:10.1016/j.addma.2018.04.024.
Benarji K, Kumar YR, Paul CP, Jinoop AN, Bindra KS. 2020. Parametric investigation and characterization on SS316 built by laser-assisted directed energy deposition. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 234(3):452–466. doi:10.1177/1464420719894718.
Brennan MC, Keist JS, Palmer TA. 2021. Defects in Metal Additive Manufacturing Processes. Journal of Materials Engineering and Performance. 30(7):4808–4818. doi:10.1007/s11665-021-05919-6.
Buchbinder D, Meiners W, Pirch N, Wissenbach K, Schrage J. 2014. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting. Journal of Laser Applications. 26(1):012004. doi:10.2351/1.4828755.
Caiazzo F, Cardaropoli F, Alfieri V, Sergi V, Cuccaro L. 2013. Experimental analysis of selective laser melting process for Ti-6Al-4V turbine blade manufacturing. In: Allakhverdiev KR, editor. Istanbul, Turkey. p. 86771H. [accessed 2022 Aug 31]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2010577.
Campanelli SL, Contuzzi N, Ludovico AD, Caiazzo F, Cardaropoli F, Sergi V. 2014. Manufacturing and characterization of Ti6Al4V lattice components manufactured by selective laser melting. Materials. 7(6):4803–4822. doi:10.3390/ma7064803.
Cao GH, Sun TY, Wang CH, Li X, Liu M, Zhang ZX, Hu PF, Russell AM, Schneider R, Gerthsen D, et al. 2018. Investigations of ?? ?? and ? precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Materials Characterization. 136:398–406. doi:10.1016/j.matchar.2018.01.006.
Carter LN, Attallah MM, Reed RC. 2012. Laser Powder Bed Fabrication of Nickel-Base Superalloys: Influence of Parameters; Characterisation, Quantification and Mitigation of Cracking. In: Superalloys 2012. John Wiley & Sons, Ltd. p. 577–586. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118516430.ch64.
Carter LN, Essa K, Attallah MM. 2015. Optimisation of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyping Journal. 21(4):423–432. doi:10.1108/RPJ-06-2013-0063.
Carter LN, Wang X, Read N, Khan R, Aristizabal M, Essa K, Attallah MM. 2016. Process optimisation of selective laser melting using energy density model for nickel based superalloys. Materials Science and Technology. 32(7):657–661. doi:10.1179/1743284715Y.0000000108.
Cerniglia D, Montinaro N. 2018. Defect Detection in Additively Manufactured Components: Laser Ultrasound and Laser Thermography Comparison. Procedia Structural Integrity. 8:154–162. doi:10.1016/j.prostr.2017.12.016.
Chen Y, Xu M, Wang J, Kong L, Peng X. 2019. A preliminary study of in-situ defects measurement for additive manufacturing based on multi-spectrum. In: Duan X, Li X, Luo X, Ma X, Pu M, Zhou R, editors. 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology. Chengdu, China: SPIE. p. 225. [accessed 2022 Aug 31]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10842/2504800/A-preliminary-study-of-in-situ-defects-measurement-for-additive/10.1117/12.2504800.full.
Chivel Y. 2013. Optical In-Process Temperature Monitoring of Selective Laser Melting. Physics Procedia. 41:904–910. doi:10.1016/j.phpro.2013.03.165.
Chlebus E, Gruber K, Ku?nicka B, Kurzac J, Kurzynowski T. 2015. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Materials Science and Engineering: A. 639:647–655. doi:10.1016/j.msea.2015.05.035.
Chlebus E, Ku?nicka B, Kurzynowski T, Dyba?a B. 2011. Microstructure and mechanical behaviour of Ti?6Al?7Nb alloy produced by selective laser melting. Materials Characterization. 62(5):488–495. doi:10.1016/j.matchar.2011.03.006.
Clijsters S, Craeghs T, Buls S, Kempen K, Kruth J-P. 2014. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int J Adv Manuf Technol. 75(5–8):1089–1101. doi:10.1007/s00170-014-6214-8.
Coble RL. 1961. Sintering crystalline solids. I. intermediate and final state diffusion models. Journal of Applied Physics. 32(5):787–792. doi:10.1063/1.1736107.
Collins PC, Bond LJ, Taheri H, Bigelow TA, Shoaib MRBM, Koester LW. 2017. Powder-based additive manufacturing - a review of types of defects, generation mechanisms, detection, property evaluation and metrology. International Journal of Additive and Subtractive Materials Manufacturing. 1(2):172. doi:10.1504/IJASMM.2017.10009247.
Craeghs T, Bechmann F, Berumen S, Kruth J-P. 2010. Feedback control of Layerwise Laser Melting using optical sensors. Physics Procedia. 5:505–514. doi:10.1016/j.phpro.2010.08.078.
Craeghs T, Clijsters S, Yasa E, Bechmann F, Berumen S, Kruth J-P. 2011. Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring. Optics and Lasers in Engineering. 49(12):1440–1446. doi:10.1016/j.optlaseng.2011.06.016.
Danninger H, Weiss B. 2003. The influence of defects on high cycle fatigue of metallic materials. Journal of Materials Processing Technology. 143–144:179–184. doi:10.1016/S0924-0136(03)00409-6.
DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W. 2018. Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science. 92:112–224. doi:10.1016/j.pmatsci.2017.10.001.
Di Angelo L, Di Stefano P, Guardiani E. 2020. Search for the Optimal Build Direction in Additive Manufacturing Technologies: A Review. JMMP. 4(3):71. doi:10.3390/jmmp4030071.
Di W, Yongqiang Y, Xubin S, Yonghua C. 2012. Study on energy input and its influences on single-track,multi-track, and multi-layer in SLM. Int J Adv Manuf Technol. 58(9–12):1189–1199. doi:10.1007/s00170-011-3443-y.
Dieter GE, editor. 1997. Metal Additive Manufacturing—A Review[1][2]. In: Materials Selection and Design. ASM International. p. 1–9. [accessed 2022 Aug 31]. https://dl.asminternational.org/books/book/59/chapter/690503/metal-additive-manufacturing-a-review-1-2.
Doubenskaia M. 2012. Comprehensive Optical Monitoring of Selective Laser Melting. jlmn. 7(3):236–243. doi:10.2961/jlmn.2012.03.0001.
Doubenskaia MA, Zhirnov IV, Teleshevskiy VI, Bertrand P, Smurov IY. 2015. Determination of True Temperature in Selective Laser Melting of Metal Powder Using Infrared Camera. MSF. 834:93–102. doi:10.4028/www.scientific.net/MSF.834.93.
Duda T, Raghavan LV. 2016. 3D Metal Printing Technology. IFAC-PapersOnLine. 49(29):103–110. doi:10.1016/j.ifacol.2016.11.111.
Erler M, Streek A, Schulze C, Exner H. 2014. Novel machine and measurement concept for micro machining by selective laser sintering. In: 25th Annual International Solid Freeform Fabrication Symposium � An Additive Manufacturing Conference, SFF 2014. p. 12–21.
Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT. 2016. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design. 95:431–445. doi:10.1016/j.matdes.2016.01.099.
Facchini L, Magalini E, Robotti P, Molinari A, Höges S, Wissenbach K. 2010. Ductility of a Ti?6Al?4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping Journal. 16(6):450–459. doi:10.1108/13552541011083371.
Farber B, Small KA, Allen C, Causton RJ, Nichols A, Simbolick J, Taheri ML. 2019. Corrigendum to “Correlation of mechanical properties to microstructure in Metal Laser Sintering Inconel 718” [Mater. Sci. Eng. A 712 (2018) 539–547]. Materials Science and Engineering: A. 743:636. doi:10.1016/j.msea.2018.01.071.
Farrell BJ, Prilutsky BI, Ritter JM, Kelley S, Popat K, Pitkin M. 2014. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants: Skin Ingrowth Into Percutaneous Porous Titanium Implants. J Biomed Mater Res. 102(5):1305–1315. doi:10.1002/jbm.a.34807.
Foster BK, Reutzel EW, Nassar AR, Hall BT, Brown SW, Dickman CJ. 2020. Optical, layerwise monitoring of powder bed fusion. In: Proceedings - 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015. p. 295–307.
Fredriksson H, Svensson I. 1976. On the mechanism of pore formation in metals. MTB. 7(4):599–606. doi:10.1007/BF02698593.
Ganeriwala R, Zohdi TI. 2014. Multiphysics Modeling and Simulation of Selective Laser Sintering Manufacturing Processes. Procedia CIRP. 14:299–304. doi:10.1016/j.procir.2014.03.015.
Gavazzoni M, Boniotti L, Foletti S. 2021. Influence of specimen size on the mechanical properties of microlattices obtained by selective laser melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235(10):1774–1787. doi:10.1177/0954406219869741.
Gisario A, Kazarian M, Martina F, Mehrpouya M. 2019. Metal additive manufacturing in the commercial aviation industry: A review. Journal of Manufacturing Systems. 53:124–149. doi:10.1016/j.jmsy.2019.08.005.
Gong H, Rafi K, Gu H, Janaki Ram GD, Starr T, Stucker B. 2015. Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Materials & Design. 86:545–554. doi:10.1016/j.matdes.2015.07.147.
Gong H, Rafi K, Gu H, Starr T, Stucker B. 2014. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing. 1–4:87–98. doi:10.1016/j.addma.2014.08.002.
Gong H, Rafi K, Karthik NV, Starr T, Stucker B. 2013. Defect morphology in Ti-6Al-4V parts fabricated by Selective Laser Melting and Electron Beam Melting. In: 24th International SFF Symposium - An Additive Manufacturing Conference, SFF 2013. p. 440–453.
Gong X, Anderson T, Chou K. 2014. Review on powder-based electron beam additive manufacturing technology. Manufacturing Review. 1:2. doi:10.1051/mfreview/2014001.
Gong X, Cheng B, Price S, Chou K. 2013. Powder-bed electron-beam-melting additive manufacturing: Powder characterization, process simulation and metrology. In: ASME District F- ECTC 2013: Early Career Technical Conference. Vol. 12.
Grasso M, Laguzza V, Semeraro Q, Colosimo BM. 2017. In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis. Journal of Manufacturing Science and Engineering. 139(5):051001. doi:10.1115/1.4034715.
Gu D, Hagedorn Y-C, Meiners W, Meng G, Batista RJS, Wissenbach K, Poprawe R. 2012. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia. 60(9):3849–3860. doi:10.1016/j.actamat.2012.04.006.
Gusarov AV, Pavlov M, Smurov I. 2011. Residual Stresses at Laser Surface Remelting and Additive Manufacturing. Physics Procedia. 12:248–254. doi:10.1016/j.phpro.2011.03.032.
Heigel JC. 2015. Thermo-Mechanical Model Development and Experimental Validation for Directed Energy Deposition Additive Manufacturing Processes [Dissertation]. The Pennsylvania State University. https://etda.libraries.psu.edu/files/final_submissions/10633.
Hu D, Kovacevic R. 2003. Sensing, modeling and control for laser-based additive manufacturing. International Journal of Machine Tools and Manufacture. 43(1):51–60. doi:10.1016/S0890-6955(02)00163-3.
Hua T, Jing C, Xin L, Fengying Z, Weidong H. 2008. Research on molten pool temperature in the process of laser rapid forming. Journal of Materials Processing Technology. 198(1–3):454–462. doi:10.1016/j.jmatprotec.2007.06.090.
Huang X, Chaturvedi MC, Richards NL. 1996. Effect of homogenization heat treatment on the microstructure and heat- affected zone microfissuring in welded cast alloy 718. MMTA. 27(3):785–790. doi:10.1007/BF02648966.
Hussein A, Hao L, Yan C, Everson R, Young P. 2013. Advanced lattice support structures for metal additive manufacturing. Journal of Materials Processing Technology. 213(7):1019–1026. doi:10.1016/j.jmatprotec.2013.01.020.
zur Jacobsmuhlen J, Kleszczynski S, Schneider D, Witt G. 2013. High resolution imaging for inspection of laser beam melting systems. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Minneapolis, MN: IEEE. p. 707–712. [accessed 2022 Aug 31]. http://ieeexplore.ieee.org/document/6555507/.
Jhabvala J, Boillat E, André C, Glardon R. 2012. An innovative method to build support structures with a pulsed laser in the selective laser melting process. Int J Adv Manuf Technol. 59(1–4):137–142. doi:10.1007/s00170-011-3470-8.
Jia Q, Gu D. 2014. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. Journal of Alloys and Compounds. 585:713–721. doi:10.1016/j.jallcom.2013.09.171.
Kanko JA, Sibley AP, Fraser JM. 2016. In situ morphology-based defect detection of selective laser melting through inline coherent imaging. Journal of Materials Processing Technology. 231:488–500. doi:10.1016/j.jmatprotec.2015.12.024.
Karimi P, Raza T, Andersson J, Svensson L-E. 2018. Influence of laser exposure time and point distance on 75-?m-thick layer of selective laser melted Alloy 718. Int J Adv Manuf Technol. 94(5–8):2199–2207. doi:10.1007/s00170-017-1019-1.
Kasperovich G, Hausmann J. 2015. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. Journal of Materials Processing Technology. 220:202–214. doi:10.1016/j.jmatprotec.2015.01.025.
Katayama S, Kobayashi Y, Mizutani M, Matsunawa A. 2001. Effect of vacuum on penetration and defects in laser welding. Journal of Laser Applications. 13(5):187–192. doi:10.2351/1.1404413.
Kawahito Y, Mizutani M, Katayama S. 2007. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J Phys D: Appl Phys. 40(19):5854–5859. doi:10.1088/0022-3727/40/19/009.
Kempen K, Thijs L, Van Humbeeck J, Kruth J-P. 2012. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Physics Procedia. 39:439–446. doi:10.1016/j.phpro.2012.10.059.
Kempen K, Thijs L, Van Humbeeck J, Kruth J-P. 2015. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Materials Science and Technology. 31(8):917–923. doi:10.1179/1743284714Y.0000000702.
Khairallah SA, Martin AA, Lee JRI, Guss G, Calta NP, Hammons JA, Nielsen MH, Chaput K, Schwalbach E, Shah MN, et al. 2020. Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science. 368(6491):660–665. doi:10.1126/science.aay7830.
Kim FH, Moylan SP. 2018. Literature review of metal additive manufacturing defects. Gaithersburg, MD: National Institute of Standards and Technology Report No.: NIST AMS 100-16. [accessed 2022 Aug 31]. http://nvlpubs.nist.gov/nistpubs/ams/NIST.AMS.100-16.pdf.
King W, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA. 2015. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Materials Science and Technology. 31(8):957–968. doi:10.1179/1743284714Y.0000000728.
Kleszczynski S, Zur Jacobsmühlen J, Sehrt J, Witt G. 2012. Error detection in laser beam melting systems by high resolution imaging. In: 2012 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Klingbeil NW, Beuth JL, Chin RK, Amon CH. 2002. Residual stress-induced warping in direct metal solid freeform fabrication. International Journal of Mechanical Sciences. 44(1):57–77. doi:10.1016/S0020-7403(01)00084-4.
Kobryn PA, Moore EH, Semiatin SL. 2000. The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V. Scripta Materialia. 43(4):299–305. doi:10.1016/S1359-6462(00)00408-5.
Kozior T. 2020. The Influence of Selected Selective Laser Sintering Technology Process Parameters on Stress Relaxation, Mass of Models, and Their Surface Texture Quality. 3D Printing and Additive Manufacturing. 7(3):126–138. doi:10.1089/3dp.2019.0036.
Kranz J, Herzog D, Emmelmann C. 2015. Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. Journal of Laser Applications. 27(S1):S14001. doi:10.2351/1.4885235.
Krauss H, Eschey C, Zaeh M. 2012. Thermography for monitoring the selective laser melting process. In: 2012 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Kruth J-P, Deckers J, Yasa E, Wauthlé R. 2012. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 226(6):980–991. doi:10.1177/0954405412437085.
Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. 2004. Selective laser melting of iron-based powder. Journal of Materials Processing Technology. 149(1–3):616–622. doi:10.1016/j.jmatprotec.2003.11.051.
Kruth J-P, Mercelis P, Van Vaerenbergh J, Craeghs T. 2007. Feedback control of selective laser melting. In: Virtual and Rapid Manufacturing. Crc Press. p. 521–528.
Kurzynowski T, Chlebus E, Ku?nicka B, Reiner J. 2012. Parameters in selective laser melting for processing metallic powders. In: Beyer E, Morris T, editors. San Francisco, California, USA. p. 823914. [accessed 2022 Aug 31]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.907292.
Land WS, Zhang B, Ziegert J, Davies A. 2015. In-Situ Metrology System for Laser Powder Bed Fusion Additive Process. Procedia Manufacturing. 1:393–403. doi:10.1016/j.promfg.2015.09.047.
Lane B, Moylan S, Whitenton EP, Ma L. 2016. Thermographic measurements of the commercial laser powder bed fusion process at NIST. RPJ. 22(5):778–787. doi:10.1108/RPJ-11-2015-0161.
Leuders S, Lieneke T, Lammers S, Tröster T, Niendorf T. 2014. On the fatigue properties of metals manufactured by selective laser melting – The role of ductility. J Mater Res. 29(17):1911–1919. doi:10.1557/jmr.2014.157.
Leuders S, Thöne M, Riemer A, Niendorf T, Tröster T, Richard HA, Maier HJ. 2013. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue. 48:300–307. doi:10.1016/j.ijfatigue.2012.11.011.
Leuders S, Vollmer M, Brenne F, Tröster T, Niendorf T. 2015. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting. Metall and Mat Trans A. 46(9):3816–3823. doi:10.1007/s11661-015-2864-x.
Leung CLA, Marussi S, Towrie M, Atwood RC, Withers PJ, Lee PD. 2019. The effect of powder oxidation on defect formation in laser additive manufacturing. Acta Materialia. 166:294–305. doi:10.1016/j.actamat.2018.12.027.
Li R, Liu J, Shi Y, Du M, Xie Z. 2010. 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting. J of Materi Eng and Perform. 19(5):666–671. doi:10.1007/s11665-009-9535-2.
Li R, Liu J, Shi Y, Wang L, Jiang W. 2012. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int J Adv Manuf Technol. 59(9–12):1025–1035. doi:10.1007/s00170-011-3566-1.
Li R, Shi Y, Wang Z, Wang L, Liu J, Jiang W. 2010. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science. 256(13):4350–4356. doi:10.1016/j.apsusc.2010.02.030.
Lippold JC. 2015. Welding Metallurgy and Weldability. 1st ed. Wiley. [accessed 2022 Aug 31]. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118960332.
Liu QC, Elambasseril J, Sun SJ, Leary M, Brandt M, Sharp PK. 2014. The Effect of Manufacturing Defects on the Fatigue Behaviour of Ti-6Al-4V Specimens Fabricated Using Selective Laser Melting. AMR. 891–892:1519–1524. doi:10.4028/www.scientific.net/AMR.891-892.1519.
Lott P, Schleifenbaum H, Meiners W, Wissenbach K, Hinke C, Bültmann J. 2011. Design of an Optical system for the In Situ Process Monitoring of Selective Laser Melting (SLM). Physics Procedia. 12:683–690. doi:10.1016/j.phpro.2011.03.085.
Lu Y, Wu S, Gan Y, Huang T, Yang C, Junjie L, Lin J. 2015. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Optics & Laser Technology. 75:197–206. doi:10.1016/j.optlastec.2015.07.009.
Manvatkar V, De A, DebRoy T. 2014. Heat transfer and material flow during laser assisted multi-layer additive manufacturing. Journal of Applied Physics. 116(12):124905. doi:10.1063/1.4896751.
Maskery I, Aboulkhair NT, Corfield MR, Tuck C, Clare AT, Leach RK, Wildman RD, Ashcroft IA, Hague RJM. 2016. Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography. Materials Characterization. 111:193–204. doi:10.1016/j.matchar.2015.12.001.
Matsunawa A, Kim J-D, Seto N, Mizutani M, Katayama S. 1998. Dynamics of keyhole and molten pool in laser welding. Journal of Laser Applications. 10(6):247–254. doi:10.2351/1.521858.
Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D. 1997. The direct metal deposition of H13 tool steel for 3-D components. JOM. 49(8):8–8. doi:10.1007/BF02914385.
McNutt PA. 2015. An investigation of cracking in laser metal deposited nickel superalloy CM247LC [PhD Thesis]. University of Birmingham.
Mercelis P, Kruth J. 2006. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal. 12(5):254–265. doi:10.1108/13552540610707013.
Miao Qiuyu ???, Liu Miaoran ???, Zhao Kai ??, Ma Guangyi ???, Wu Dongjiang ???. 2018. Research Progress on Technologies of Additive Manufacturing of Aluminum Alloys. Laser Optoelectron Prog. 55(1):011405. doi:10.3788/LOP55.011405.
Mireles J, Ridwan S, Morton PA, Hinojos A, Wicker RB. 2015. Analysis and correction of defects within parts fabricated using powder bed fusion technology. Surf Topogr: Metrol Prop. 3(3):034002. doi:10.1088/2051-672X/3/3/034002.
Mohanty S, Hattel JH. 2016. Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds. In: Gu B, Helvajian H, Piqué A, editors. San Francisco, California, United States. p. 97381B. [accessed 2022 Aug 31]. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2212621.
Moon SK, Tan YE, Hwang J, Yoon Y-J. 2014. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int J of Precis Eng and Manuf-Green Tech. 1(3):223–228. doi:10.1007/s40684-014-0028-x.
Mukherjee T, DebRoy T. 2018. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. Journal of Manufacturing Processes. 36:442–449. doi:10.1016/j.jmapro.2018.10.028.
Mumtaz K, Hopkinson N. 2009. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyping Journal. 15(2):96–103. doi:10.1108/13552540910943397.
Mumtaz KA, Hopkinson N. 2010. Selective Laser Melting of thin wall parts using pulse shaping. Journal of Materials Processing Technology. 210(2):279–287. doi:10.1016/j.jmatprotec.2009.09.011.
Narvan M, Al-Rubaie KS, Elbestawi M. 2019. Process-Structure-Property Relationships of AISI H13 Tool Steel Processed with Selective Laser Melting. Materials. 12(14):2284. doi:10.3390/ma12142284.
N’Dri N, Mindt H-W, Shula B, Megahed M, Peralta A, Kantzos P, Neumann J. 2015. DMLS Process Modelling & Validation. In: TMS2015 Supplemental Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc. p. 389–396. [accessed 2022 Aug 31]. https://onlinelibrary.wiley.com/doi/10.1002/9781119093466.ch49.
Neef A, Seyda V, Herzog D, Emmelmann C, Schönleber M, Kogel-Hollacher M. 2014. Low Coherence Interferometry in Selective Laser Melting. Physics Procedia. 56:82–89. doi:10.1016/j.phpro.2014.08.100.
Nickel AH, Barnett DM, Prinz FB. 2001. Thermal stresses and deposition patterns in layered manufacturing. Materials Science and Engineering: A. 317(1–2):59–64. doi:10.1016/S0921-5093(01)01179-0.
Nordin NAB, Johar MAB, Ibrahim MHIB, Marwah OMF bin. 2017. Advances in High Temperature Materials for Additive Manufacturing. IOP Conf Ser: Mater Sci Eng. 226:012176. doi:10.1088/1757-899X/226/1/012176.
Ocelík V, Bosgra J, de Hosson JThM. 2009. In-situ strain observation in high power laser cladding. Surface and Coatings Technology. 203(20–21):3189–3196. doi:10.1016/j.surfcoat.2009.03.050.
Panwisawas C, Qiu CL, Sovani Y, Brooks JW, Attallah MM, Basoalto HC. 2015. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia. 105:14–17. doi:10.1016/j.scriptamat.2015.04.016.
Papadakis L, Loizou A, Risse J, Schrage J. 2014. Numerical Computation of Component Shape Distortion Manufactured by Selective Laser Melting. Procedia CIRP. 18:90–95. doi:10.1016/j.procir.2014.06.113.
Patterson AE, Messimer SL, Farrington PA. 2017. Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need. Technologies. 5(2):15. doi:10.3390/technologies5020015.
Pavlov M, Doubenskaia M, Smurov I. 2010. Pyrometric analysis of thermal processes in SLM technology. Physics Procedia. 5:523–531. doi:10.1016/j.phpro.2010.08.080.
Pilloz M, Pelletier JM, Vannes AB. 1992. Residual stresses induced by laser coatings: phenomenological analysis and predictions. J Mater Sci. 27(5):1240–1244. doi:10.1007/BF01142030.
Plati A, Tan JC, Golosnoy IO, Persoons R, van?Acker K, Clyne TW. 2006. Residual Stress Generation during Laser Cladding of Steel with a Particulate Metal Matrix Composite. Adv Eng Mater. 8(7):619–624. doi:10.1002/adem.200600063.
Popovich VA, Borisov EV, Popovich AA, Sufiiarov VSh, Masaylo DV, Alzina L. 2017. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting. Materials & Design. 131:12–22. doi:10.1016/j.matdes.2017.05.065.
Qiu C, Adkins NJE, Attallah MM. 2013. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Materials Science and Engineering: A. 578:230–239. doi:10.1016/j.msea.2013.04.099.
Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. 2013a. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J of Materi Eng and Perform. 22(12):3872–3883. doi:10.1007/s11665-013-0658-0.
Rafi HK, Karthik NV, Gong H, Starr TL, Stucker BE. 2013b. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J of Materi Eng and Perform. 22(12):3872–3883. doi:10.1007/s11665-013-0658-0.
Rangaswamy P, Griffith ML, Prime MB, Holden TM, Rogge RB, Edwards JM, Sebring RJ. 2005. Residual stresses in LENS® components using neutron diffraction and contour method. Materials Science and Engineering: A. 399(1–2):72–83. doi:10.1016/j.msea.2005.02.019.
Rao GA, Kumar M, Srinivas M, Sarma DS. 2003. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718. Materials Science and Engineering: A. 355(1–2):114–125. doi:10.1016/S0921-5093(03)00079-0.
Razavi S, Bordonaro G, Ferro P, Torgersen J, Berto F. 2021. Porosity effect on tensile behavior of Ti-6Al-4V specimens produced by laser engineered net shaping technology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235(10):1930–1937. doi:10.1177/0954406218813384.
Read N, Wang W, Essa K, Attallah MM. 2015. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015). 65:417–424. doi:10.1016/j.matdes.2014.09.044.
Reutzel EW, Nassar AR. 2015. A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyping Journal. 21(2):159–167. doi:10.1108/RPJ-12-2014-0177.
Ridwan S, Mireles J, Gaytan S, Espalin D, Wicker R. 2014. Automatic layerwise acquisition of thermal and geometric data of the electron beam melting process using infrared thermography. In: 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Samarov V, Goloveshkin V. 2010. Modeling of Hot Isostatic Pressing. In: Furrer DU, Semiatin SL, editors. Metals Process Simulation. ASM International. p. 335–342. [accessed 2022 Aug 31]. http://dl.asminternational.org/handbooks/book/58/chapter/677579/Modeling-of-Hot-Isostatic-Pressing.
Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. 2016. The metallurgy and processing science of metal additive manufacturing. International Materials Reviews. 61(5):315–360. doi:10.1080/09506608.2015.1116649.
Schilp J, Seidel C, Krauss H, Weirather J. 2014. Investigations on Temperature Fields during Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling. Advances in Mechanical Engineering. 6:217584. doi:10.1155/2014/217584.
Sercombe T, Jones N, Day R, Kop A. 2008. Heat treatment of Ti?6Al?7Nb components produced by selective laser melting. Rapid Prototyping Journal. 14(5):300–304. doi:10.1108/13552540810907974.
Shifeng W, Shuai L, Qingsong W, Yan C, Sheng Z, Yusheng S. 2014. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology. 214(11):2660–2667. doi:10.1016/j.jmatprotec.2014.06.002.
Simonelli M, Tse YY, Tuck C. 2014. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V. Materials Science and Engineering: A. 616:1–11. doi:10.1016/j.msea.2014.07.086.
Sljivic M, Pavlovic A, Stanojevic M, Fragassa C. 2016. Combining additive manufacturing and vacuum casting for an efficient manufacturing of safety glasses. FME Transaction. 44(4):393–397. doi:10.5937/fmet1604393S.
Slotwinski JA, Garboczi EJ, Hebenstreit KM. 2014. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control. J RES NATL INST STAN. 119:494. doi:10.6028/jres.119.019.
Smith DH, Bicknell J, Jorgensen L, Patterson BM, Cordes NL, Tsukrov I, Knezevic M. 2016. Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718. Materials Characterization. 113:1–9. doi:10.1016/j.matchar.2016.01.003.
Smith RJ, Hirsch M, Patel R, Li W, Clare AT, Sharples SD. 2016. Spatially resolved acoustic spectroscopy for selective laser melting. Journal of Materials Processing Technology. 236:93–102. doi:10.1016/j.jmatprotec.2016.05.005.
Song B, Dong S, Liu Q, Liao H, Coddet C. 2014. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior. Materials & Design (1980-2015). 54:727–733. doi:10.1016/j.matdes.2013.08.085.
Strano G, Hao L, Everson RM, Evans KE. 2013. Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology. 213(4):589–597. doi:10.1016/j.jmatprotec.2012.11.011.
Strößner J, Terock M, Glatzel U. 2015. Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM): Mechanical and Microstructural Investigation …. Adv Eng Mater. 17(8):1099–1105. doi:10.1002/adem.201500158.
Sun S, Durandet Y, Brandt M. 2005. Parametric investigation of pulsed Nd: YAG laser cladding of stellite 6 on stainless steel. Surface and Coatings Technology. 194(2–3):225–231. doi:10.1016/j.surfcoat.2004.03.058.
Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB. 2015. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Materials Characterization. 102:47–61. doi:10.1016/j.matchar.2015.02.008.
Teimouri M, Asgari M. 2021. Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235(9):1593–1618. doi:10.1177/0954406220947119.
Thijs L, Kempen K, Kruth J-P, Van Humbeeck J. 2013. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Materialia. 61(5):1809–1819. doi:10.1016/j.actamat.2012.11.052.
Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth J-P. 2010. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia. 58(9):3303–3312. doi:10.1016/j.actamat.2010.02.004.
Thomas B, Bibb R. 2008. An investigation into the geometric constraints of selective laser melting for the development of design rules. In: 9th National Conference on Rapid Design, Prototyping & Manufacture. p. 11–20.
Thomas D. 2010. The development of design rules for selective laser melting [PhD Thesis]. University of Wales.
Thombansen U, Gatej A, Pereira M. 2015. Process observation in fiber laser-based selective laser melting. Optical engineering 54.:pages 7 S. doi:10.18154/RWTH-CONV-090525.
Tillmann W, Schaak C, Nellesen J, Schaper M, Aydinöz ME, Hoyer K-P. 2017. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Additive Manufacturing. 13:93–102. doi:10.1016/j.addma.2016.11.006.
Tino R, Leary M, Yeo A, Kyriakou E, Kron T, Brandt M. 2020. Additive manufacturing in radiation oncology: a review of clinical practice, emerging trends and research opportunities. Int J Extrem Manuf. 2(1):012003. doi:10.1088/2631-7990/ab70af.
Trevisan RE, Schwemmer DD, Olson DL. 1990. The Fundamentals of Weld Metal Pore Formation. In: Materials Processing: Theory and Practices. Vol. 8. Elsevier. p. 79–115. [accessed 2022 Aug 31]. https://linkinghub.elsevier.com/retrieve/pii/B9780444874276500095.
Tucho WM, Cuvillier P, Sjolyst-Kverneland A, Hansen V. 2017. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Materials Science and Engineering: A. 689:220–232. doi:10.1016/j.msea.2017.02.062.
Van Gestel C. 2015 Nov 9. Study of physical phenomena of selective laser melting towards increased productivity. doi:10.5075/EPFL-THESIS-6817. [accessed 2022 Aug 31]. https://infoscience.epfl.ch/record/213538/files/EPFL_TH6817.pdf.
Vandenbroucke B, Kruth J. 2007. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal. 13(4):196–203. doi:10.1108/13552540710776142.
Varela J, Merino J, Pickett C, Abu-Issa A, Arrieta E, Murr LE, Wicker RB, Ahlfors M, Godfrey D, Medina F. 2020. Performance Characterization of Laser Powder Bed Fusion Fabricated Inconel 718 Treated with Experimental Hot Isostatic Processing Cycles. JMMP. 4(3):73. doi:10.3390/jmmp4030073.
Vasinonta A, Beuth JL, Griffith M. 2007. Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures. Journal of Manufacturing Science and Engineering. 129(1):101–109. doi:10.1115/1.2335852.
Vilaro T, Colin C, Bartout JD. 2011. As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting. Metall and Mat Trans A. 42(10):3190–3199. doi:10.1007/s11661-011-0731-y.
Vora P, Mumtaz K, Todd I, Hopkinson N. 2015. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Additive Manufacturing. 7:12–19. doi:10.1016/j.addma.2015.06.003.
Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J. 2012. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds. 541:177–185. doi:10.1016/j.jallcom.2012.07.022.
Wang C, Li S, Zeng D, Zhu X. 2021. Quantification and compensation of thermal distortion in additive manufacturing: A computational statistics approach. Computer Methods in Applied Mechanics and Engineering. 375:113611. doi:10.1016/j.cma.2020.113611.
Wang L, Felicelli SD, Pratt P. 2008. Residual stresses in LENS-deposited AISI 410 stainless steel plates. Materials Science and Engineering: A. 496(1–2):234–241. doi:10.1016/j.msea.2008.05.044.
Wang L, Wei Q, He W, Shi Y. 2012. Influence of powder characteristic and process parameters on SLM formability. Huazhong Keji Daxue Xuebao(Ziran Kexue Ban)/ Journal of Huazhong University of Science and Technology(Nature Science Edition). 40(6).
Wang Z, Guan K, Gao M, Li X, Chen X, Zeng X. 2012. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. Journal of Alloys and Compounds. 513:518–523. doi:10.1016/j.jallcom.2011.10.107.
Wegner A, Witt G. 2011. Process monitoring in laser sintering using thermal imaging. In: 2011 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R. 2015. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology. 221:112–120. doi:10.1016/j.jmatprotec.2015.02.013.
Wu M-W, Lai P-H, Chen J-K. 2016. Anisotropy in the impact toughness of selective laser melted Ti–6Al–4V alloy. Materials Science and Engineering: A. 650:295–299. doi:10.1016/j.msea.2015.10.045.
Xiao B, Zhang Y. 2007a. Marangoni and Buoyancy Effects on Direct Metal Laser Sintering with a Moving Laser Beam. Numerical Heat Transfer, Part A: Applications. 51(8):715–733. doi:10.1080/10407780600968593.
Xiao B, Zhang Y. 2007b. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning. J Phys D: Appl Phys. 40(21):6725–6734. doi:10.1088/0022-3727/40/21/036.
Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M. 2015. Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Materialia. 85:74–84. doi:10.1016/j.actamat.2014.11.028.
Yadroitsava I, Yadroitsev I. 2015. Residual stress in metal specimens produced by direct metal laser sintering. In: 2015 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I. 2010. Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology. 210(12):1624–1631. doi:10.1016/j.jmatprotec.2010.05.010.
Yadroitsev I, Krakhmalev P, Yadroitsava I. 2014. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. Journal of Alloys and Compounds. 583:404–409. doi:10.1016/j.jallcom.2013.08.183.
Yadroitsev I, Smurov I. 2011. Surface Morphology in Selective Laser Melting of Metal Powders. Physics Procedia. 12:264–270. doi:10.1016/j.phpro.2011.03.034.
Yadroitsev I, Thivillon L, Bertrand Ph, Smurov I. 2007. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Applied Surface Science. 254(4):980–983. doi:10.1016/j.apsusc.2007.08.046.
Yan C, Hao L, Hussein A, Young P. 2015. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials. 51:61–73. doi:10.1016/j.jmbbm.2015.06.024.
Yuan L. 2019. Solidification Defects in Additive Manufactured Materials. JOM. 71(9):3221–3222. doi:10.1007/s11837-019-03662-x.
Zäh MF, Lutzmann S. 2010. Modelling and simulation of electron beam melting. Prod Eng Res Devel. 4(1):15–23. doi:10.1007/s11740-009-0197-6.
Zeng K. 2015. Optimization of support structures for selective laser melting. University of Louisville. [accessed 2022 Aug 31]. http://ir.library.louisville.edu/etd/2221.
Zeng K, Pal D, Stucker B. 2012. A review of thermal analysis methods in laser sintering and selective laser melting. In: 2012 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
Zhang B, Dembinski L, Coddet C. 2013. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Materials Science and Engineering: A. 584:21–31. doi:10.1016/j.msea.2013.06.055.
Zhang B, Li Y, Bai Q. 2017. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin J Mech Eng. 30(3):515–527. doi:10.1007/s10033-017-0121-5.
Zhang B, Ziegert J, Farahi F, Davies A. 2016. In situ surface topography of laser powder bed fusion using fringe projection. Additive Manufacturing. 12:100–107. doi:10.1016/j.addma.2016.08.001.
Zhang D, Niu W, Cao X, Liu Z. 2015. Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy. Materials Science and Engineering: A. 644:32–40. doi:10.1016/j.msea.2015.06.021.
Zhang S. 2013. Cracking Behavior and Formation Mechanism of TC4 Alloy Formed by Selective Laser Melting. JME. 49(23):21. doi:10.3901/JME.2013.23.021.
Zhang Xiaobo ???, Dang Xin?an ???, Yang Lijun ???. 2014. Study on Balling Phenomena in Selective Laser Melting. Laser Optoelectron Prog. 51(6):061401. doi:10.3788/LOP51.061401.
Zhao C, Guo Q, Li X, Parab N, Fezzaa K, Tan W, Chen L, Sun T. 2019. Bulk-Explosion-Induced Metal Spattering During Laser Processing. Phys Rev X. 9(2):021052. doi:10.1103/PhysRevX.9.021052.
Zhao H, DebRoy T. 2003. Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. Journal of Applied Physics. 93(12):10089–10096. doi:10.1063/1.1573732.
Zhao X, Chen J, Lin X, Huang W. 2008. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Materials Science and Engineering: A. 478(1–2):119–124. doi:10.1016/j.msea.2007.05.079.
Zhao X, Lin X, Chen J, Xue L, Huang W. 2009. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Materials Science and Engineering: A. 504(1–2):129–134. doi:10.1016/j.msea.2008.12.024.
Zhou X, Liu X, Zhang D, Shen Z, Liu W. 2015. Balling phenomena in selective laser melted tungsten. Journal of Materials Processing Technology. 222:33–42. doi:10.1016/j.jmatprotec.2015.02.032.
Zhou X, Wang D, Liu X, Zhang D, Qu S, Ma J, London G, Shen Z, Liu W. 2015. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Materialia. 98:1–16. doi:10.1016/j.actamat.2015.07.014.
Živanovi? S, Popovi? M, Vorkapi? N, Pjevi? M, Slavkovi? N. 2020. An overview of rapid prototyping technologies using subtractive, additive and formative processes. FME Transactions. 48(2):246–253. doi:10.5937/fmet2001246Z.
Zohdi TI. 2013. Rapid Simulation of Laser Processing of Discrete Particulate Materials. Arch Computat Methods Eng. 20(4):309–325. doi:10.1007/s11831-013-9092-6.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2022 The Author(s)