Characteristics in Water Phantom of Epithermal Neutron Beam Produced by Double Layer Beam Shaping Assembly
AJSTD 36(1) cover


Absorbed dose
Epithermal neutron & gamma distribution
Water phantom


A Double Layer Beam Shaping Assembly (DLBSA) was designed to produce epithermal neutrons for BNCT purposes. The Monte Carlo N-Particle eXtended program was used as the software to design the DLBSA and phantom. Distribution of epithermal neutron and gamma flux in the DLBSA and phantom and absorbed dose in the phantom were computed using the Particle and Heavy Ion Transport code System program. Testing results of epithermal neutron beam irradiation of the water phantom showed that epithermal neutrons were thermalized and penetrated the phantom up to a depth of 12 cm. The maximum value of the absorbed dose was 2 × 10-3 Gy at a depth of 2 cm in the phantom.


Asnal M, Liamsuwan T, Onjun T. 2015. An evaluation on the design of beam shaping assembly based on the D- T reaction for BNCT. J Phys Conf Ser. 611:012031. doi: 10.1088/1742-6596/611/1/012031.

Ganjeh ZA, Eslami-Kalantari M. 2019. Design and optimization of two-sided beam based on 7Li(p,n)7Be source us- ing in BNCT for brain and liver tumors. Nucl Instrum Methods Phys Res A. 916:290–295. doi:10.1016/j.nima.2 018.11.084.

Ghal–Eh N, Goudarzi H, Rahmani F. 2017. FLUKA simulation studies on in–phantom dosimetric parameters of a LINAC–based BNCT. Radiat Phys Chem. 141:36–40. doi:10.1016/j.radphyschem.2017.06.004.

Hashimoto Y, Hiraga F, Kiyanagi Y. 2014. Effects of proton energy on optimal moderator system and neutron- induced radioactivity of compact accelerator-driven9Be(p,n) neutron sources for BNCT. Phys Procedia. 60:332–340. doi:10.1016/J.PHPRO.2014.11.045.

Hu G, Hu HS, Wang S, Pan ZH, Jia QG, Yan MF. 2016. The“neutron channel design”—a method for gaining the de- sired neutrons. AIP Adv. 6(12):125025. doi:10.1063/1.49 72203.

International Atomic Energy Agency. 2001. Current status of neutron capture therapy. Number 1223 in TECDOC Series. Vienna: International Atomic Energy Agency.

Kasesaz Y, Khala? H, Rahmani F. 2013. Optimization of the beam shaping assembly in the D–D neutron generators- based BNCT using the response matrix method. Appl Radiat Isot. 82:55–59. doi:10.1016/j.apradiso.2013.07.0 08.

Kasesaz Y, Khala? H, Rahmani F. 2014. Design of an epithermal neutron beam for BNCT in thermal column of Tehran research reactor. Ann Nucl Energy. 68:234–238. doi:10.1016/J.ANUCENE.2014.01.014.

Kiyanagi Y. 2018. Accelerator-based neutron source for boron neutron capture therapy. Ther Radiol Oncol. 2:55–55. doi:10.21037/tro.2018.10.05.

Lamarsh JR, Baratta AJ. 2001. Introduction to nuclear engineering. 3rd edition. New Jersey: Prentice Hall.Ma CW, Lv CJ, Zhang GQ, Wang HW, Zuo JX. 2015. Neutron-induced reactions on AlF3 studied using the optical model. Nucl Instrum Methods Phys Res B. 356-357:42–45. doi:10.1016/J.NIMB.2015.04.060.

Mirzaei H, Sahebkar A, Salehi R, Nahand J, Karimi E, Jaafari M, Mirzaei H. 2016. Boron neutron capture therapy:Moving toward targeted cancer therapy. J Cancer Res Ther. 12(2):520. doi:10.4103/0973-1482.176167.

Mishima Y. 1996. Selective thermal neutron capture therapy of cancer cells using their speci?c metabolic activities— melanoma as prototype. In: Y Mishima, editor. Cancer neutron capture therapy. Boston: Springer. p. 1–26. doi:10.1007/978-1-4757-9567-7_1.

Moghaddasi L, Bezak E. 2018. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components. Australas Phys Eng Sci Med. 41(1):129–141. doi:10.1007/s13246-018-0617-z.

Monshizadeh M, Kasesaz Y, Khala? H, Hamidi S. 2015. MCNP design of thermal and epithermal neutron beam for BNCT at the Isfahan MNSR. Prog Nucl Energy. 83:427–432. doi:10.1016/J.PNUCENE.2015.05.004.

Morcos HN, Naguib K. 2012. QMENF-G: a computer package for quasi-mono-energetic neutron ?lters. Ann


Download data is not yet available.