Problem Solving of Isopropyl Alcohol – Water Azeotropic Characteristics Using Packed (Natural Zeolite) Bed Adsorber
AJSTD 37(1)
pdf

Keywords

Adsorption kinetics
Natural zeolite
Azeotropic mixture
Freundlich model
Isopropyl-alcohol-water

Abstract

The adsorption kinetics of water from an azeotropic mixture of isopropyl alcohol and water using chemically activated natural zeolites with and without a binder (starch) was investigated. In addition, an investigation of the compressive strength of zeolite pellets was conducted to ascertain the performance of the adsorbent for long-term operation. Three parameters were applied in the zeolite-making process: the particle size of zeolite (20, 30, 50, and 80 mesh), the sintering temperature (550, 750, and 1,000°C), the compaction pressure (2, 4, and 6 tonnes), and the starch-to-zeolite weight ratio (0, 1:3, 1:5, and 1:7). Initial screenings indicated that the strongest zeolite pellet was 80-mesh zeolite powder (without starch addition) that was compacted using 6 tonnes pressure and was sintered at 750°C. The adsorption tests using the strongest zeolite were conducted in a packed-bed column for three cycles, followed by compressive strength tests on the zeolite pellets after each cycle. According to the experimental data, zeolite pellets made without the addition of starch could adsorb up to 98.4% of the initial water in the mixture. From the four models proposed to describe the kinetics of adsorption of water from the mixture, the Freundlich model turned out to be the best model.

https://doi.org/10.29037/ajstd.611
pdf

References

Arias Arias FE, Beneduci A, Chidichimo F, Furia E, Straface S. 2017. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere. 180:11–23. doi:10.1016/j.chemosphere.2017.03.137.

[ASTM] American Society for Testing and Materials. 2017. Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete. West Conshohocken: ASTM International. doi:10.1520/C0138_C0138M-17A.

[ASTM] American Society for Testing and Materials. 2020. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken: ASTM International. doi:10.1520/C0039_C0039M-20.

Bonaccorsi L, Bruzzaniti P, Calabrese L, Proverbio E. 2016. Organosilanes functionalization of alumino-silica zeolites for water adsorption applications. Microporous Mesoporous Mater. 234:113–119. doi:10.1016/j.micromeso.2016.07.019.

Chaniago YD, Minh LQ, Khan MS, Koo KK, Bahadori A, Lee M. 2015. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry. Energy Convers Manage. 102:92–103. doi:10.1016/j.enconman.2015.03.086.

Chaudhry SA, Zaidi Z, Siddiqui SI. 2017. Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): modelling and process optimization. J Mol Liq. 229:230–240. doi:10.1016/j.molliq.2016.12.048.

Chen HH, Chen MK, Chien IL. 2017. Using [EMIM][OAC] as entrainer for isopropyl alcohol dehydration via extractive distillation. Paper presented at: 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP); Taipei, Taiwan. p. 257–262. doi:10.1109/ADCONIP.2017.7983790.

Giroux M, Sahadeo E, Libera R, Maurizi A, Giles I, Marteel-Parrish A. 2016. An undergraduate research experience: synthesis, modification, and comparison of hydrophobicity of zeolites A and X. Polyhedron. 114:42–52. doi:10.1016/j.poly.2015.09.037.

Hua D, Ong YK, Wang Y, Yang T, Chung TS. 2014. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. J Membr Sci. 453:155–167. doi:10.1016/j.memsci.2013.10.059.

Kasik A, Lin YS. 2014. Organic solvent pervaporation properties of MOF-5 membranes. Sep Purif Technol. 121:38–45. doi:10.1016/j.seppur.2013.04.033.

Kuila SB, Ray SK. 2013. Separation of isopropyl alcohol-water mixtures by pervaporation using copolymer membrane: analysis of sorption and permeation. Chem Eng Res Des. 91(2):377–388. doi:10.1016/j.cherd.2012.08.005.

Liu Y, Feist SD, Jones CM, Armstrong DR. 2014. Isopropyl alcohol dehydration by hot gas pressure swing adsorption: experiments, simulations, and implementation. Ind Eng Chem Res. 53(20):8599–8607. doi:10.1021/ie500171v.

Lu S, Ma Y, Zhu C, Shen S, He Q. 2009. The effect of hydrophobic modification of zeolites on CO2 absorption enhancement. Chin J Chem Eng. 17(1):36–41. doi:10.1016/S1004-9541(09)60029-X.

Nagarajan V, Chandiramouli R. 2017. Adsorption studies of alcohol molecules on monolayer MoS 2 nanosheet—a first-principles insights. Appl Surf Sci. 413:109–117. doi:10.1016/j.apsusc.2017.04.008.

Pérez-Page M, Makel J, Guan K, Zhang S, Tringe J, Castro RH, Stroeve P. 2016. Gas adsorption properties of ZSM-5 zeolites heated to extreme temperatures. Ceram Int. 42(14):15423–15431. doi:10.1016/j.ceramint.2016.06.193.

Saha BB, El-Sharkawy II, Miyazaki T, Koyama S, Henninger SK, Herbst A, Janiak C. 2015. Ethanol adsorption onto metal organic framework: theory and experiments. Energy. 79(C):363–370. doi:10.1016/j.energy.2014.11.022.

Sawamura KI, Furuhata T, Sekine Y, Kikuchi E, Subramanian B, Matsukata M. 2015. Zeolite membrane for dehydration of isopropylalcohol-water mixture by vapor permeation. ACS Appl Mater Interfaces. 7(25):13728–13730. doi:10.1021/acsami.5b04085.

Siddiki SM, Toyao T, Kon K, Touchy AS, ichi Shimizu K. 2016. Catalytic hydrolysis of hydrophobic esters on/in water by high-silica large pore zeolites. J Catal. 344:741–748. doi:10.1016/j.jcat.2016.08.021.

Tan KL, Hameed BH. 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng. 74:25–48. doi:10.1016/j.jtice.2017.01.024.

Veiga PM, Gomes AC, Veloso CO, Henriques CA. 2017. Acid zeolites for glycerol etherification with ethyl alcohol: catalytic activity and catalyst properties. Appl Catal, A. 548(July):2–15. doi:10.1016/j.apcata.2017.06.042.

Walter V, Pfeuffer B, Hoffmann U, Turek T, Hoell D, Kunz U. 2016. Heterogeneous reactive extraction for isopropyl alcohol liquid phase synthesis: microkinetics and equilibria. Chem Eng Sci. 155:175–185. doi:10.1016/j.ces.2016.08.005.

Wirawan SK, Sudibyo H, Setiaji MF. 2015. Development of natural zeolites adsorbent: chemical analysis and preliminary TPD adsorption study. J Eng Sci Technol. (3):87–95.

Yu Q, Zhang R, Deng S, Huang J, Yu G. 2009. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: kinetic and isotherm study. Water Res. 43(4):1150–1158. doi:10.1016/j.watres.2008.12.001.

Zhang Y, Hirata A, Nakasaka Y, Tago T, Taniguchi T, Masuda T. 2016. Effects of crystal morphology, Si/Al ratio and thickness of an MTW zeolite membrane on water/2-propanol separation by pervaporation. Microporous Mesoporous Mater. 222:178–184. doi:10.1016/j.micromeso.2015.09.021.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)

Downloads

Download data is not yet available.