Comprehensive Assessment on the Environmental Conditions of Abandoned and Inactive Mines in the Philippines
pdf

Keywords

Abandoned mines
Inactive mines
Mine rehabilitation
Risk assessment
Philippines

Abstract

Most abandoned and inactive mines in the Philippines pose high risks to human health and the environment due to the disturbed and exposed heavy metal-laden soils and sediments and water-filled open pit mines. Establishing these mines’ environmental conditions remains a challenge as it requires time, effort, resources, and faces a lack of funding as the economic phase of the mine has already ceased. In order to contribute to the solution on the assessment of abandoned and inactive mines, integrated methods with combined essential testing, sampling, and analyses of different environmental media present in the mine site are suggested in this paper. On-site and laboratory methods include analyses for water (surface water and groundwater characterization, quality assessment, and environmental isotope tracers), soils and sediments (heavy and trace metals, anomalous elements, erosion, and nutrient availability), air quality, and radiometric survey. These methods can be classified as rapid with complete data, and information can be gathered to support a health risk assessment in the area, as well as used as a guide for rehabilitation prioritization of the abandoned mines.

https://doi.org/10.29037/ajstd.623
pdf

References

Aggangan NS, Anarna JA, Cadiz NM. 2019. Tree legume – microbial symbiosis and other soil amendments as rehabilitation strategies in mine tailings in the Philippines. Philipp J Sci. 148(3):481–491.

Akcali I, Kucuksezgin F. 2011. A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Mar Pollut Bull. 62(3):637–645. doi:10.1016/j.marpolbul.2010.12.021.

Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019. doi:10.1155/2019/6730305.

Bueno M. 2018. Evaluation of abandoned mine lands rehabilitation: the case of Bagacay mine, Western Samar, Philippines [Master’s thesis]. [Tokyo]: University of Tokyo.

Corales-Ultra OG, Peja RP, Casas EV. 2019. Baseline study on the levels of heavy metals in seawater and macroalgae near an abandoned mine in Manicani, Guiuan, Eastern Samar, Philippines. Mar Pollut Bull. 149:110549. doi:10.1016/j.marpolbul.2019.110549.

David CP. 2002. Heavy metal concentrations in marine sediments impacted by a mine-tailings spill, Marinduque Island, Philippines. Environ Geol. 42(8):955–965. doi:10.1007/s00254-002-0601-4.

[DENR] Department of Environment and Natural Resources. 2016. Water quality guidelines and general effluent standards of 2016. Quezon City: Department of Environment and Natural Resources. https://pab.emb.gov.ph/wp-content/uploads/2017/07/DAO-2016-08-WQG-and-GES.pdf.

Favas PJdC, Martino LE, Prasad MNV. 2018. Abandoned mine land reclamation-challenges and opportunities (holistic approach). In: Prasad MNV, de Campos Favas PJ, Maiti SK, editors. Bio-geotechnologies for mine site rehabilitation. Amsterdam: Elsevier. p. 3–31. doi:10.1016/B978-0-12-812986-9.00001-4.

Fortoul T, Rodriguez-Lara V, Gonzalez-Villalva A, Rojas-Lemus M, Colin-Barenque L, Bizarro-Nevares P, García-Peláez I, Ustarroz-Cano M, López-Zepeda S, Cervantes-Yépez S, López-Valdez N, Meléndez-García N, Espinosa-Zurutuza M, Cano-Gutierrez G, Cano-Rodríguez M. 2015. Health effects of metals in particulate matter. In: Nejadkoorki F, editor. Current air quality issues. London: InTech. doi:10.5772/59749.

Gionfriddo C, Ogorek J, Butcher M, Krabbenhoft D, Moreau J. 2015. Mercury distribution and mobility at the abandoned Puhipuhi mercury mine, Northland, New Zealand. N Z J Geol Geop. 58(1):78–87. doi:10.1080/00288306.2014.979840.

Gray JE, Crock JG, Fey DL. 2002. Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem. 17(8):1069–1079. doi:10.1016/S0883-2927(02) 00004-5.

Gray JE, Greaves IA, Bustos DM, Krabbenhoft DP. 2003. Mercury and methylmercury contents in mine-waste calcine, water, and sediment collected from the Palawan Quicksilver mine, Philippines. Environ Geol. 43(3):298–307. doi:10.1007/s00254-002-0626-8.

Hasheela I, Schneider GI, Ellmies R, Haidula A, Leonard R, Ndalulilwa K, Shigwana O, Walmsley B. 2014. Risk assessment methodology for shut-down and abandoned mine sites in Namibia. J Geochem Explor. 144(PC):572–580. doi:10.1016/j.gexplo.2014.05.009.

Hillegonds DJ, Wassenaar L, Klaus P, Aggarwal P. 2014. Synthesis report: intercomparison test for the determination of low-level tritium activities in natural waters for age dating purposes (TRIC2012). Vienna: International Atomic Energy Agency. http://www-naweb.iaea.org/napc/ih/IHS_programme_ihl_tric.html.

Holden WN. 2012. Ecclesial opposition to large-scale mining on Samar: neoliberalism meets the church of the poor in a wounded land. Religions. 3(3):833–861. doi:10.3390/rel3030833.

Lanot JL, Lawig JAL, Lecaros JA, Malagotnot PJL, Labay PM, Samaniego JO. 2020. Physico-chemical properties and heavy metal contents of Ino-capayang mine-made lake in Marinduque, Philippines. Int J Eng Res Technol. 13(6):1493–1496.

Lim HS, Lee JS, Chon HT, Sager M. 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J Geochem Explor. 96(2-3):223–230. doi:10.1016/j.gexplo.2007.04.008.

Matisoff G. 2014. 210Pb as a tracer of soil erosion, sediment source area identification and particle transport in the terrestrial environment. J Environ Radioact. 138:343–354. doi:10.1016/j.jenvrad.2014.03.008.

Motzer W. 2007. Tritium age dating of groundwater. HydroVisions. 16(2):5,23. https://www.grac.org/media/files/files/388022b0/Summer_2007.pdf.

Qiu G, Feng X, Wang S, Shang L. 2005. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem. 20(3):627–638. doi:10.1016/j.apgeochem.2004.09.006.

Qiu G, Feng X, Wang S, Shang L. 2006. Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeastern Guizhou, China. Environ Pollut. 142(3):549–558. doi:10.1016/j.envpol.2005.10.015.

Samaniego J, Gibaga CR, Tanciongco A, Rastrullo R. 2020. Total mercury in soils and sediments in the vicinity of abandoned mercury mine area in Puerto Princesa City, Philippines. Appl Sci. 10(13):4599. doi:10.3390/app10134599.

Samaniego JO, Gibaga CRL, Tanciongco AM, Rastrullo RM, Costa MAV. 2019. Surface water characteristics in the vicinity of abandoned mercury mine site in Puerto Princesa City, Philippines. Philipp J Sci. 148(3):493–498. http://philjournalsci.dost.gov.ph/94-vol-148-no-3-september-2019/1076-surface-water-characteristics-in-the-vicinity-of-abandoned-mercury-mine-site-in-puerto-princesa-city-philippines.

Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A. 2010. A review of worldwide atmospheric mercury measurements. Atmos Chem Phys. 10(17):8245–8265. doi:10.5194/acp-10-8245-2010.

[US EPA] United States Environmental Protection Agency. 2002. Supplemental guidance for developing soil screening levels for superfund sites. Washington (DC): Office of Emergency and Remedial Response.

[US EPA] United States Environmental Protection Agency. 2011. Exposure factors handbook 2011 edition (final). Washington (DC): Office of Emergency and Remedial Response.

[US EPA] United States Environmental Protection Agency. 2019. TENORM: copper mining and production wastes. https://www.epa.gov/radiation/tenorm-copper-mining-and-production-wastes.

Wang L, Ji B, Hu Y, Liu R, Sun W. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere. 184:594–600. doi:10.1016/j.chemosphere.2017.06.025.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)

Downloads

Download data is not yet available.