Water Quality Assessment and Monitoring of Closed Rearing System of the Sea Cucumber Holothuria scabra
pdf

Keywords

Water quality
Monitoring
Physicochemical parameters
Rearing system
Sea cucumber

Abstract

Sea cucumbers are an essential fishery resource. Therefore, effective aquaculture methods should be developed to achieve their optimal production. Sea cucumbers are susceptible to various environmental factors, one of which is water quality. Monitoring water quality based on physical and chemical parameters should be useful to the rearing system in aquaculture. In practical use, farmers usually monitor only temperature, salinity, and pH, neglecting the essential role of chemical parameters. This review focuses on and urges the monitoring of physical and chemical parameters. We explored the water quality parameters that may be crucial to the sea cucumber rearing system, including temperature, salinity, pH, dissolved oxygen, ammonia, turbidity, particulate organic matter, total nitrogen, nitrate, nitrite, ammonium, silicate, and phosphate. Furthermore, this paper presents a practical way to monitor the aquaculture or rearing system of sea cucumbers. It is suggested that temperature and salinity are the crucial physical parameters, while the essential chemical parameters are phosphate, nitrate, and ammonia.

https://doi.org/10.29037/ajstd.624
pdf

References

Agudo NS. 2006. Sandfish hatchery techniques. Canberra: Australian Centre for International Agricultural Research.

Agudo NS. 2012. Pond grow-out trials for sandfish (Holothuria scabra) in New Caledonia. Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings No. 136. Canberra: Australian Centre for International Agricultural Research. p. 104–112.

An Z, Dong Y, Dong S. 2007. Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture. 272(1-4):644–648. doi:10.1016/j.aquaculture.2007.08.038.

An ZH, Dong YW, Dong SL. 2009. A high-performance temperature-control scheme: growth of sea cucumber Apostichopus japonicus with different modes of diel temperature fluctuation. Aquac Int. 17(5):459–467. doi:10.1007/s10499-008-9216-4.

Asha PS, Muthiah P. 2005. Effects of temperature, salinity and pH on larval growth, survival and development of the sea cucumber Holothuria spinifera Theel. Aquaculture. 250(3-4):823–829. doi:10.1016/j.aquaculture.2005.04.075.

Azad AK, McKinley RS, Forster IP, Pearce CM. 2014. The California sea cucumber-a potential candidate for aquaculture. World Aquacult. 45(2):43–48.

Bell JD, Agudo NN, Purcell SW, Blazer P, Simutoga M, Pham D, Patrona LD. 2007. Grow-out of sandfish Holothuria scabra in ponds shows that co-culture with shrimp Litopenaeus stylirostris is not viable. Aquaculture. 273(4):509–519. doi:10.1016/j.aquaculture.2007.07.015.

Bhosale S, Vijayalakshmi D. 2015. Processing and nutritional composition of rice bran. Curr Res Nutr Food Sci. 3(1):74–80. doi:10.12944/CRNFSJ.3.1.08.

Ceccarelli DM, Logan M, Purcell SW. 2018. Analysis of optimal habitat for captive release of the sea cucumber Holothuria scabra. Mar Ecol Prog Ser. 588:85–100. doi:10.3354/meps12444.

Chen J. 2003. Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-Mer Inf. Bull. 18:18–23.

Cigala RM, Crea F, Lando G, Milea D, Sammartano S. 2010. Solubility and acid-base properties of concentrated phytate in self-medium and in NaClaq at T = 298.15 K. J Chem Thermodyn. 42(11):1393–1399. doi:10.1016/j.jct.2010.06.005.

Collard M, Eeckhaut I, Dehairs F, Dubois P. 2014. Acid–base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva. Environ Sci Pollut Res. 21(23):13602–13614. doi:10.1007/s11356-014-3259-z.

Conand C. 2017. Expansion of global sea cucumber fisheries buoys exports. Rev Biol Trop. 65(1):S1–S10. doi:10.15517/rbt.v65i1-1.31661.

Conand C. 2018. Tropical sea cucumber fisheries: changes during the last decade. Mar Pollut Bull. 133:590–594. doi:10.1016/j.marpolbul.2018.05.014.

Dobson GT, Duy NDQ, Paul NA, Southgate PC. 2020. Assessing potential for integrating sea grape (Caulerpa lentillifera) culture with sandfish (Holothuria scabra) and Babylon snail (Babylonia areolata) co-culture. Aquaculture. 522:735153. doi:10.1016/j.aquaculture.2020.735153.

Domínguez-Godino JA, González-Wangüemert M. 2018. Breeding and larval development of Holothuria mammata, a new target species for aquaculture. Aquac Res. 49(4):1430–1440. doi:10.1111/are.13597.

Domínguez-Godino JA, González-Wangüemert M. 2019. Assessment of Holothuria arguinensis feeding rate, growth and absorption efficiency under aquaculture conditions. N Z J Mar Freshwater Res. 53(1):60–76. doi:10.1080/00288330.2018.1480499.

Dong Y, Dong S, Tian X, Wang F, Zhang M. 2006. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture. 255(1-4):514–521. doi:10.1016/j.aquaculture.2005.12.013.

Dumalan RJP, Bondoc KGV, Juinio-Meñez MA. 2019. Grow-out culture trial of sandfish Holothuria scabra in pens near a mariculture-impacted area. Aquaculture. 507:481–492. doi:10.1016/j.aquaculture.2019.04.045.

Duy ND. 2012. Large-scale sandfish production from pond culture in Vietnam. Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings No. 136. Canberra: Australian Centre for International Agricultural Research. p. 34–49.

Eeckhaut I, Fevrier J, Todinanahary G, Delroisse J. 2020. Impact of Thalamita crenata (Decapoda; Portunidae) predation on Holothuria scabra juvenile survival in sea farming pens. SPC Beche-de-Mer Inf. Bull. 40:11–16.

Eriksson H, Robinson G, Slater MJ, Troell M. 2012. Sea cucumber aquaculture in the Western Indian Ocean: challenges for sustainable livelihood and stock improvement. Ambio. 41(2):109–121. doi:10.1007/s13280-011-0195-8.

Gangadhar B, Umalatha H, Hegde G, Vasundhara R, Sridhar N. 2017. Influence of commonly used manures on the growth and nutrient composition of periphyton. Insights Aquac Cult Biotechnol. 1(1):1–6.

Geng C, Tian Y, Shang Y, Wang L, Jiang Y, Chang Y. 2016. Effect of acute salinity stress on ion homeostasis, Na+/K+-ATPase and histological structure in sea cucumber Apostichopus japonicus. SpringerPlus. 5(1). doi:10.1186/s40064-016-3620-4.

Hair C, Mills DJ, McIntyre R, Southgate PC. 2016. Optimising methods for community-based sea cucumber ranching: experimental releases of cultured juvenile Holothuria scabra into seagrass meadows in Papua New Guinea. Aquacult Rep. 3:198–208. doi:10.1016/j.aqrep.2016.03.004.

Han Q, Keesing JK, Liu D. 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Rev Fish Sci Aquac. 24(4):326–341. doi:10.1080/23308249.2016.1193472.

Hannah L, Pearce CM, Cross SF. 2013. Growth and survival of California sea cucumbers (Parastichopus californicus) cultivated with sablefish (Anoplopoma fimbria) at an integrated multi-trophic aquaculture site. Aquaculture. 406-407:34–42. doi:10.1016/j.aquaculture.2013.04.022.

Hu M, Li Q, Li L. 2010. Effect of salinity and temperature on salinity tolerance of the sea cucumber Apostichopus japonicus. Fish Sci. 76:267–273. doi:10.1007/s12562-010-0214-x.

James DB. 2004. Captive breeding of the sea cucumber, Holothuria scabra, from India. FAO Fish Tech Pap. 463.

Ji T, Dong Y, Dong S. 2008. Growth and physiological responses in the sea cucumber, Apostichopus japonicus Selenka: aestivation and temperature. Aquaculture. 283(1-4):180–187. doi:10.1016/j.aquaculture.2008.07.006.

Juinio-Meñez MA, Evangelio JC, Miralao SJA. 2014. Trial grow-out culture of sea cucumber Holothuria scabra in sea cages and pens. Aquac Res. 45(8):1332–1340. doi:10.1111/are.12078.

Kalapathy U, Proctor A, Shultz J. 2000. A simple method for production of pure silica from rice hull ash. Bioresour Technol. 73(3):257–262. doi:10.1016/S0960-8524(99) 00127-3.

Kang KH, Kwon JY, Kim YM. 2003. A beneficial coculture: charm abalone Haliotis discus hannai and sea cucumber Stichopus japonicus. Aquaculture. 216(1-4):87–93. doi:10.1016/S0044-8486(02)00203-X.

Knud-Hansen CF, Clair D. 1998. Pond fertilization: ecological approach and practical application. Corvallis: Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University.

Kühnhold H, Kamyab E, Novais S, Indriana L, Kunzmann A, Slater M, Lemos M. 2017. Thermal stress effects on energy resource allocation and oxygen consumption rate in the juvenile sea cucumber, Holothuria scabra (Jaeger, 1833). Aquaculture. 467:109–117. doi:10.1016/j.aquaculture.2016.03.018.

Kühnhold H, Steinmann N, Huang YH, Indriana L, Meyer A, Kunzmann A. 2019. Temperature-induced aerobic scope and Hsp70 expression in the sea cucumber Holothuria scabra. PLOS ONE. 14(3):e0214373. doi:10.1371/journal.pone.0214373.

Li J, Dong S, Gao Q, Wang F, Tian X, Zhang S. 2013. Total organic carbon budget of integrated aquaculture system of sea cucumber Apostichopus japonicus, jellyfish Rhopilema esculenta and shrimp Fenneropenaeus chinensis. Aquacult Res. 45(11):1825–1831.

Li J, Dong S, Tian X, Shi C, Wang F, Gao Q, Zhu C. 2015. Effects of the diatom Cylindrotheca fusiformis on the growth of the sea cucumber Apostichopus japonicus and water quality in ponds. Aquac Int. 23(4):955–965. doi:10.1007/s10499-014-9854-7.

Li L, Li Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquac Int. 18(3):447–460. doi:10.1007/s10499-009-9256-4.

Liu W. 2014. The changes in water environment in mariculture ponds during icing period in coastal Huanghai Sea and Bohai Sea. J Dalian Ocean Univ. 29(1):51–56. doi:10.3969/J.ISSN.2095-1388.2014.01.011.

Liu X, Zhou Y, Yang H, Ru S. 2013. Eelgrass detritus as a food source for the sea cucumber Apostichopus japonicus selenka (echinidermata: Holothuroidea) in coastal waters of north china: an experimental study in flow-through systems. PLOS ONE. 8(3):e58293. doi:10.1371/journal.pone.0058293.

Liu Z, Ma Y, Yang Z, Li M, Liu J, Bao P. 2012. Immune responses and disease resistance of the juvenile sea cucumber Apostichopus japonicus induced by Metschnikowia sp. C14. Aquaculture. 368-369:10–18. doi:10.1016/j.aquaculture.2012.09.009.

MacDonald CL, Stead SM, Slater MJ. 2013. Consumption and remediation of European Seabass (Dicentrarchus labrax) waste by the sea cucumber Holothuria forskali. Aquac Int. 21(6):1279–1290. doi:10.1007/s10499-013-9629-6.

MacTavish T, Stenton-Dozey J, Vopel K, Savage C. 2012. Deposit-feeding sea cucumbers enhance mineralization and nutrient cycling in organically-enriched coastal sediments. PLoS ONE. 7(11):e50031. doi:10.1371/journal.pone.0050031.

Mills DJ, Duy NDQ, Juinio-Menez MA, Raison CM, Zarate JM. 2012. Overview of sea cucumber aquaculture and sea-ranching research in the South-East Asian region. Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings No. 136. Canberra: Australian Centre for International Agricultural Research. p. 22–31.

Namukose M, Msuya F, Ferse S, Slater M, Kunzmann A. 2016. Growth performance of the sea cucumber Holothuria scabra and the seaweed Eucheuma denticulatum: integrated mariculture and effects on sediment organic characteristics. Aquacult Environ Interact. 8:179–189. doi:10.3354/aei00172.

Navarro PG, García-Sanz S, Barrio JM, Tuya F. 2013. Feeding and movement patterns of the sea cucumber Holothuria sanctori. Mar Biol. 160(11):2957–2966. doi:10.1007/s00227-013-2286-5.

Nelson EJ, MacDonald BA, Robinson SM. 2012a. The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species. Aquaculture. 370-371:19–25. doi:10.1016/j.aquaculture.2012.09.029.

Nelson EJ, MacDonald BA, Robinson SMC. 2012b. A review of the northern sea cucumber Cucumaria frondosa (Gunnerus, 1767) as a potential aquaculture species. Rev Fish Sci. 20(4):212–219. doi:10.1080/10641262.2012.719043.

Neofitou N, Lolas A, Ballios I, Skordas K, Tziantziou L, Vafidis D. 2019. Contribution of sea cucumber Holothuria tubulosa on organic load reduction from fish farming operation. Aquaculture. 501:97–103. doi:10.1016/j.aquaculture.2018.10.071.

Pitt R, Duy NDQ. 2004. Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. FAO Fish Tech Pap. 463:333–346.

Purcell S, Conand C, Uthicke S, Byrne M. 2016. Ecological roles of exploited sea cucumbers. Oceanogr Mar Biol. 54:367–386. doi:10.1201/9781315368597-8.

Purcell SW. 2004. Rapid growth and bioturbation activity of the sea cucumber Holothuria scabra in earther ponds. Proceedings of Australasian aquaculture. Sydney. p. 244.

Purcell SW. 2010. Diel burying by the tropical sea cucumber Holothuria scabra: effects of environmental stimuli, handling and ontogeny. Mar Biol. 157(3):663–671. doi:10.1007/s00227-009-1351-6.

Purcell SW, Hair CA, Mills DJ. 2012. Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities. doi:10.1016/j.aquaculture.2012.08.053.

Purcell SW, Patrois J, Fraisse N. 2006. Experimental evaluation of co-culture of juvenile sea cucumbers, Holothuria scabra (Jaeger), with juvenile blue shrimp, Litopenaeus stylirostris (Stimpson). Aquac Res. 37(5):515–522. doi:10.1111/j.1365-2109.2006.01458.x.

Purcell SW, Wu M. 2017. Large-scale sandfish (Holothuria scabra) aquaculture in multitrophic polyculture ponds in southern China. SPC Beche-de-Mer Inf Bull. 37:51–52.

Qi Z, Wang J, Mao Y, Liu H, Fang J. 2013. Feasibility of off-shore co-culture of abalone, Haliotis discus hannai Ino, and sea cucumber, Apostichopus japonicus, in a temperate zone. J World Aquacult Soc. 44(4):565–573. doi:10.1111/jwas.12056.

Qin C, Dong S, Tan F, Tian X, Wang F, Dong Y, Gao Q. 2009. Optimization of stocking density for the sea cucumber, Apostichopus japonicus Selenka, under feed-supplement and non-feed-supplement regimes in pond culture. J Ocean Univ China. 8(3):296–302. doi:10.1007/s11802-009-0296-1.

Rakaj A, Fianchini A, Boncagni P, Scardi M, Cataudella S. 2019. Artificial reproduction of Holothuria polii: a new candidate for aquaculture. Aquaculture. 498:444–453. doi:10.1016/j.aquaculture.2018.08.060.

Robinson G, Lovatelli A. 2015. Global sea cucumber fisheries and aquaculture FAO’s inputs over the past few years. FAO Aquacult Newsl. 53:55–57.

Robinson G, Pascal B. 2012. Sea cucumber farming experiences in south-western Madagascar. Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings No. 136. Canberra: Australian Centre for International Agricultural Research. p. 142–155.

Sadeghi-Nassaj SM, Batanero GL, Mazuecos IP, Alonso C, Reche I. 2018. Sea cucumbers reduce nitrogen, bacteria and transparent exopolymer particles in Anemonia sulcata aquaculture tanks. Aquacult Res. 49(11):3669–3681. doi:10.1111/are.13836.

Sembiring SBM, Wibawa GS, Hutapea JH, Giri INA. 2019. Effect of salinity on the survival, growth and immunity rate of juvenile sea cucumbers (Holothuria scabra). Biotropia. 26(3):163–171. doi:10.11598/btb.2019.26.3.1041.

Sithisak P, Pongtippatee P, Withyachumnarnkul B. 2013. Improving inland culture performance of juvenile sea cucumbers, Holothuria scabra, by co-culture with red tilapia. Songklanakarin J Sci Technol. 35(5):501–505.

Tuwo A, Tresnati J, Saharuddin. 2012. Analysis of growth of sandfish Holothuria scabra cultured at different cultivated habitat. Proc Annu Int Conf Syiah Kuala Univ. 2(1):17–21.

Wang H, Liu CF, Qin CX, Cao SQ, Ding J. 2007. Using a macroalgae Ulva pertusa biofilter in a recirculating system for production of juvenile sea cucumber Apostichopus japonicus. doi:10.1016/j.aquaeng.2007.01.008.

Watanabe S, Kodama M, Zarate J, Lebata-Ramos M, Nievales M. 2012. Ability of sandfish (Holothuria scabra) to utilise organic matter in black tiger shrimp ponds. Asia–Pacific tropical sea cucumber aquaculture. ACIAR Proceedings No. 136. Canberra: Australian Centre for International Agricultural Research. p. 113–120.

Xia S, Yang H, Li Y, Liu S, Zhou Y, Zhang L. 2012a. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture. 338–341:304–308. doi:10.1016/j.aquaculture.2012.01.010.

Xia S, Zhao P, Chen K, Li Y, Liu S, Zhang L, Yang H. 2012b. Feeding preferences of the sea cucumber Apostichopus japonicus (selenka) on various seaweed diets. Aquaculture. 344–349:205–209. doi:10.1016/j.aquaculture.2012.03.022.

Xilin S. 2004. The progress and prospects of studies on artificial propagation and culture of the sea cucumber, Apostichopus japonicus. Workshop on advances in sea cucumber aquaculture and management. Rome: FAO. p. 273–276.

Xu D, Su L, Zhao P. 2015. Apostichopus japonicus in the worldwide production and trade of sea cucumbers. In: Yang H, Hamel JF, Mercier A, editors. Developments in aquaculture and fisheries science. Amsterdam: Elsevier. p. 383–398. doi:10.1016/B978-0-12-799953-1.00021-0.

Yu Z, Yang H, Hamel JF, Mercier A. 2015. Larval, juvenile, and adult predators. In: Yang H, Hamel JF, Mercier A, editors. Developments in aquaculture and fisheries science. Amsterdam: Elsevier. p. 243–256. doi:10.1016/B978-0-12-799953-1.00014-3.

Yu Z, Zhou Y, Yang H, Ma Y, Hu C. 2014. Survival, growth, food availability and assimilation efficiency of the sea cucumber Apostichopus japonicus bottom-cultured under a fish farm in southern China. Aquaculture. 426-427:238–248. doi:10.1016/j.aquaculture.2014.02.013.

Yuan X, Yang H, Meng L, Wang L, Li Y. 2013. Impacts of temperature on the scavenging efficiency by the deposit-feeding holothurian Apostichopus japonicus on a simulated organic pollutant in the bivalve-macroalage polyculture from the perspective of nutrient budgets. Aquaculture. 406-407:97–104. doi:10.1016/j.aquaculture.2013.05.009.

Yuan X, Yang H, Wang L, Zhou Y, Gabr HR. 2010. Effects of salinity on energy budget in pond-cultured sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture. 306(1-4):348–351. doi:10.1016/j.aquaculture.2010.04.026.

Yuan X, Zhou Y, Mao Y. 2015. Apostichopus japonicus: a key species in integrated polyculture systems. In: Yang H, Hamel JF, Mercier A, editors. Developments in aquaculture and fisheries science. Amsterdam: Elsevier. p. 323–332. doi:10.1016/B978-0-12-799953-1.00017-9.

Zamora LN, Jeffs AG. 2012. Feeding, metabolism and growth in response to temperature in juveniles of the Australasian sea cucumber, Australostichopus mollis. Aquaculture. 358-359:92–97. doi:10.1016/j.aquaculture.2012.06.024.

Zamora LN, Yuan X, Carton AG, Slater MJ. 2018. Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges. Rev Aquac. 10(1):57–74. doi:10.1111/raq.12147.

Zhang L, Song X, Hamel JF, Mercier A. 2015. Aquaculture, stock enhancement, and restocking. In: Yang H, Hamel JF, Mercier A, editors. Developments in aquaculture and fisheries science. Amsterdam: Elsevier. p. 289–322. doi:10.1016/B978-0-12-799953-1.00016-7.

Zhu BW, Yu JW, Zhang Z, Zhou DY, Yang JF, Li DM, Murata Y. 2009. Purification and partial characterization of an acid phosphatase from the body wall of sea cucumber Stichopus japonicus. Process Biochem. 44(8):875–879. doi:10.1016/j.procbio.2009.04.010.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)

Downloads

Download data is not yet available.