Sea Level Rise in Indonesia: The Drivers and the Combined Impacts from Land Subsidence


Land subsidence
Sea level rise
Spatial variations


Sea level changes play an important role as an indicator of climate change. However, without climate change, the sea level itself shows strong regional patterns, both in space and time, that could deviate significantly from global averages. The spatial variability of sea level changes in Indonesia can be divided based on its drivers, i.e., climatic and seasonal weather-driven and non-climatic and geological-driven. Seasonally, the sea level in Indonesia is generally high in northwest monsoon and low in southeast monsoon. Nevertheless, there is a possibility of extreme natural phenomenon influences that generate anomalies and a thermosteric process that also affects the sea level. On the non-climatic and geological theory, the uniqueness of the tectonic setting in Indonesia will create spatial variations in regional sea levels, as both static and dynamic changes in a long period of time. Land subsidence is also often regarded as a significant contributor to the rise of relative sea level in coastal environments. Combined with the rise in sea level, land subsidence will escalate coastal flooding risks, contribute to shoreline retreat, and be further aggravated by anthropogenic forces such as groundwater extraction and land development. This scientific review will summarize the spatial variation of sea level rise in Indonesia, examines the underlying drivers that control it, and provides an overview of the combined sea level rise and land subsidence as a significant threat in Indonesia.


Abidin H, Andreas H, Gamal M, Gumilar I, Napitupulu M, Fukuda Y, Deguchi T, Maruyama Y, Riawan E. 2010. Land subsidence characteristics of the Jakarta basin (Indonesia) and its relation with groundwater extraction and sea level rise. In: Taniguchi M, Holman IP, editors. Groundwater response to changing climate. Leiden: CRC Press/Balkema. p. 113–130.

Cazenave A, Cozannet GL. 2014. Sea level rise and its coastal impacts. Earth’s Future. 2(2):15–34. doi:10.1002/2013ef000188.

Chambers DP, Cazenave A, Champollion N, Dieng H, Llovel W, Forsberg R, von Schuckmann K, Wada Y. 2017. Evaluation of the global mean sea level budget between 1993 and 2014. Surv Geophys. 38(1):309–327. doi:10.1007/s10712-016-9381-3.

Chaussard E, Amelung F, Abidin H, Hong SH. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ. 128:150–161. doi:10.1016/j.rse.2012.10.015.

Chowdhury P, Behera MR. 2015. A study on regional sea level variation along the Indian coast. Procedia Eng. 116(1):1078–1084. doi:10.1016/j.proeng.2015.08.348.

Douglas BC. 2001. Sea level change in the era of the recording tide gauge. In: Douglas BC, Kearney MS, Leatherman SP, editors. Sea level rise. San Diego: Academic Press. p. 37–64. doi:10.1016/s0074-6142(01)80006-1.

Eggleston J, Pope J. 2013. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. Circular 1392. Virginia: US Geological Survey. doi:10.3133/CIR1392.

Fenoglio-Marc L, Schöne T, Illigner J, Becker M, Manurung P, Khafid. 2012. Sea level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian region. Mar Geod. 35(SUPPL. 1):137–150. doi:10.1080/01490419.2012.718682.

Fu LLF, Cazenave A. 2001. Satellite altimetry and earth sciences: a handbook of techniques and applications. 1st edition. San Diego: Academic Press.

Gerhard LC, Harrison WE, Hanson BM. 2001. Geological perspectives of global climate change. Tusla: American Association of Petroleum Geologists. doi:10.1306/st47737.

Hanh PTT, Furukawa M. 2007. Impact of sea level rise on coastal zone of Vietnam. Bull Fac Sci Univ Ryukyus. 84:45–59.

Hieronymus M. 2019. An update on the thermosteric sea level rise commitment to global warming. Environ Res Lett. 14(5):054018. doi:10.1088/1748-9326/ab1c31.

Horton BP, Shennan I. 2009. Compaction of Holocene strata and the implications for relative sealevel change on the east coast of England. Geology. 37(12):1083–1086. doi:10.1130/G30042A.1.

[ICCSR] Indonesia Climate Change Sectoral Roadmap. 2010. Scientific basis: analysis and projection of sea level rise and extreme weather events. Jakarta: Ministry of National Development Planning or National Development Planning Agency, Republic of Indonesia.

Ingebritsen SE, Galloway DL. 2014. Coastal subsidence and relative sea level rise. Environ Res Lett. 9(9):091002. doi:10.1088/1748-9326/9/9/091002.

[IPCC] Intergovernmental Panel on Climate Change. 2007. Climate change 2007: the physical science basis. In: Working group I: contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

Kolker AS, Allison MA, Hameed S. 2011. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys Res Lett. 38(21):L21404. doi:10.1029/2011GL049458.

Kopp RE, Hay CC, Little CM, Mitrovica JX. 2015. Geographic variability of sea-level change. Curr Clim Change Rep. 1(3):192–204. doi:10.1007/s40641-015-0015-5.

Kopp RE, Kemp AC, Bittermann K, Horton BP, Donnelly JP, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S. 2016. Temperature-driven global sea-level variability in the Common Era. Proc Natl Acad Sci USA. 113(11):E1434–E1441. doi:10.1073/pnas.1517056113.

Levitus S, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM. 2012. World ocean heat content and thermosteric sea level change (0-2000m), 1955-2010. Geophys Res Lett. 39(10). doi:10.1029/2012GL051106.

Luu QH, Tkalich P, Tay TW. 2015. Sea level trend and variability around Peninsular Malaysia. Ocean Sci. 11(4):617–628. doi:10.5194/os-11-617-2015.

Mansawan AA, Gaol JL, Panjaitan JP. 2017. Variation and trend of sea level derived from altimetry satellite and tide gauge in Cilacap and Benoa coastal areas. Int J Remote Sens Earth Sci. 13(1):59–66. doi:10.30536/j.ijreses.2016.v13.a2703.

Nababan B, Hadianti S, Natih N. 2015. Dynamic of sea level anomaly of Indonesian waters (in Bahasa Indonesia). Jurnal Ilmu dan Teknologi Kelautan Tropis. 7(1):259–272. doi:10.29244/jitkt.v7i1.9943.

Nerem RS, Beckley BD, Fasullo JT, Hamlington BD, Masters D, Mitchum GT. 2018. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc Natl Acad Sci USA. 115(9):2022–2025. doi:10.1073/pnas.1717312115.

Nicholls R, Wong P, Burkett V, Codignotto JO, Hay J, Roger F M, Ragoonaden S, Woodroffe CD. 2007. Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson C, editors. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. p. 315–356.

Nikolov T. 2012. A possible connection between some meteorological and climatic phenomena and earth’s hot spots. Proc Bulg Acad Sci. 65(6):839–846.

[NOAA] National Oceanic and Atmospheric Administration. 2020. Laboratory for satellite altimetry/sea level rise. Silver Spring: National Oceanic and Atmospheric Administration; [accessed 2020 Jul 1].

Paw JN, Thia-Eng C. 1991. Climate changes and sea level rise: implications on coastal area utilization and management in South-east Asia. Ocean Shoreline Manage. 15(3):205–232. doi:10.1016/0951-8312(91)90043-2.

Phien-wej N, Giao PH, Nutalaya P. 2006. Land subsidence in Bangkok, Thailand. Eng Geol. 82(4):187–201. doi:10.1016/j.enggeo.2005.10.004.

Purba NP, Faizal I, Damanik FS, Rachim FR, Mulyani PG. 2020. Overview of oceanic eddies in Indonesia seas based on the sea surface temperature and sea surface height. World Sci News. 147:166–178.

Sarah D, Soebowo E. 2018. Land subsidence threats and its management in the North Coast of Java. IOP Conf Ser: Earth Environ Sci. 118(1):012042. doi:10.1088/1755-1315/118/1/012042.

Sarwar GM, Khan MH. 2007. Sea level rise. A threat to the coast of Bangladesh. Int Asienforum. 38(3-4):375–397. doi:10.11588/iaf.2007.38.329.

Sofian I. 2013. Estimating the steric sea level rise in Indonesian seas using an oceanic general circulation model. Int J Geoinformatics. 9(3):1–7.

Sofian I, Kozai K, Ohsawa T. 2008. Investigation on the relationship between wind-induced volume transport and mean sea level in the Java Sea using an oceanic general circulation model. J Meteorol Soc Japan. 83(4):127–139.

Sofian I, Nahib I. 2010. Sea level rise projections by using altimeter data and IPCC-AR4 models (in Bahasa Indonesia). Globe. 12(2):173–181.

Sofian I, Supangat A, Fitriyanto MS, Kurniawan R. 2011. Understanding and anticipating the impact of climate change in coastal and seas in eastern Indonesia (in Bahasa Indonesia). J Meteorologi Geofisika. 12(1):53–64. doi:10.31172/jmg.v12i1.86.

Sojisuporn P, Sangmanee C, Wattayakorn G. 2013. Recent estimate of sea-level rise in the Gulf of Thailand. Maejo Int J Sci Technol. 7 (Special Issue):106–113.

Sprintall J. 2009. Indonesian throughflow. In: Steele JH, editor. Encyclopedia of ocean sciences. 2nd edition. Oxford: Academic Press. p. 237–243. doi:10.1016/B978-012374473-9.00602-0.

Stammer D, Cazenave A, Ponte RM, Tamisiea ME. 2013. Causes for contemporary regional sea level changes. Ann Rev Mar Sci. 5(1):21–46. doi:10.1146/annurev-marine-121211-172406.

Wibowo PLA, Hartoko A, Ambariyanto A. 2015. Land subsidence affects coastal zone vulnerability (Pengaruh penurunan tanah terhadap kerentanan wilayah pesisir). Ilmu Kelautan: Indonesian Journal of Marine Sciences. 20(3):127–134. doi:10.14710/ik.ijms.20.3.127-134.

Widodo A. 2017. Analyzing Indonesia’s NCICD project to stop the capital city sinking. Otoritas: Jurnal Ilmu Pemerintahan. 7(2):54–66. doi:10.26618/ojip.v7i2.769.
Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2020 The Author(s)


Download data is not yet available.