Optimum Medium for Lipase Production by Lipolytic Filamentous Fungi Isolated from Kendari Landfill Soil
pdf

Keywords

Aspergillus
Lipase
Optimization
Response Surface Methodology (RSM)
Taguchi

Abstract

Lipase produced by Aspergillus is widely known and used in many industrial sectors. In a previous study, three lipolytic filamentous fungi were isolated from Kendari (Southeast Sulawesi, Indonesia) landfill soil and identified as Aspergillus niger KE1, Aspergillus terreus KC1, and Aspergillus fumigatus KE6. However, the optimization of these isolates has not been reported. In this study, statistical optimization was selected because it is more effective, efficient, economical, and robust in achieving results, and the possibility of analyzing the interaction effects among factors. Three lipolytic isolates were screened in the initial medium to obtain the highest lipolytic isolate, which was used in the medium optimization process. Optimization was performed using the series experimental design of Taguchi and RSM. Optimization successfully obtained the optimum medium with the reduction of the medium component from the previously reported medium. Aspergillus niger KE1 was the selected isolate with the highest lipase productivity after 72 h in the initial medium. The significant factors affecting lipase production were peptone, olive oil, glucose, and MgSO4 .7H2O. The model equation obtained was Y = 1043 ? 228 A + 300 B ? 19803 C + 99 A*A + 5720 B*B + 292855 C*C ? 979 A*B + 6563 A*C ? 56338 B*C. This model successfully predicted the lipase productivity with an R2 of 96.9%. The optimized medium was composed of 2% peptone, 0.1% olive oil, 0.5% glucose, and 0.075% MgSO4 .7H2O. Using the medium, lipase productivity increases 4.7-fold. Our results suggest that A. niger KE1 is a potential lipase source which catalyses the esterification reaction. Further research is needed to purify and characterize the lipase enzyme of this isolate.

https://doi.org/10.29037/ajstd.644
pdf

References

Adham NZ, Ahmed EM. 2009. Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties. Indian J Microbiol. 49(1):77–83. doi:10.1007/s12088-009-0004-2.

Aky?l MH, Cihangir N. 2018. Detection of lipase production from newly isolated Trichoderma citrinoviride. Hacettepe J Biol Chem. 2(46):229–235. doi:10.15671/hjbc.2018.231.

Awad GEA, Mostafa H, Danial EN, Abdelwahed NAM, Awad HM. 2015. Enhanced production of thermostable lipase from Bacillus cereus ASSCRC-P1 in waste frying oil based medium using statistical experimental design. J Appl Pharm Sci. 5(9):007–015. doi:10.7324/JAPS.2015.50902.

Ayinla ZA, Ademakinwa AN, Agboola FK. 2017. Studies on the optimization of lipase production by Rhizopus sp. ZAC3 isolated from the contaminated soil of a palm oil processing shed. J Appl Biol Biotechnol. 5:30–37. doi:10.7324/jabb.2017.50205.

Balan A, Ibrahim D, Abdul Rahim R, Ahmad Rashid FA. 2012. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Res. 2012(2012):987523. doi:10.1155/2012/987523.

Bindiya P, Thiruveedula R. 2012. Optimization of lipase production from an indigenously isolated marine Aspergillus sydowii of Bay of Bengal. J Biochem Tech. 3:S203–S211.

Bora L, Bora M. 2012. Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp isolated from hotspring of Arunachal Pradesh, India. Braz J Microbiol. 43(1):30–42. doi:10.1590/S1517-83822012000100004.

Brooks AA, Asamudo NU. 2011. Lipase production by strains of Aspergillus species isolated from contaminated body creams. J Toxicol Environ Health Sci. 3(11):311–316. doi:10.5897/JTEHS.9000049.

Chen HC, Ju HY, Wu TT, Liu YC, Lee CC, Chang C, Chung YL, Shieh CJ. 2011. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. J Biomed Biotechnol. 2011. doi:10.1155/2011/950725.

Cihangir N, Sarikaya E. 2004. Investigation of lipase production by a new isolate of Aspergillus sp. World J Microbiol Biotechnol. 20(2):193–197. doi:10.1023/B:WIBI.0000021781.61031.3a.

Costa MAF, Peralta RM. 1999. Production of lipase by soil fungi and partial characterization of lipase from a selected strain (Penicillium wortmanii). J Basic Microbiol. 39(1):11–15. doi:10.1002/(SICI)1521- 4028(199903)39:1<11::AID-JOBM11> 3.0.CO;2-8.

Dutra JCV, da C Terzi S, Bevilaqua JV, Damaso MCT, Couri S, Langone MAP, Senna LF. 2008. Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl Biochem Biotechnol. 147(1):63–75. doi:10.1007/s12010-007-8068-0.

Facchini FDA, Vici AC, Pereira MG, Jorge JA, de Lourdes M, Polizeli T. 2015. Enhanced lipase production of Fusarium verticillioides by using response surface methodology and wastewater pretreatment application. J Biochem Technol. 6(3):996–1002. http://www.jbiochemtech.com/index.php/jbt/article/view/JBT637/pdf.

Falony G, Coca Armas J, Dustet Mendoza JC, Martínez-Hernández J. 2006. Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technol Biotech. 44(2):235–240. https://hrcak.srce.hr/109860.

Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S. 1996. Microbial lipases: production and applications. Sci Prog. 79(2):119–157. https://www.jstor.org/stable/43421608.

Griffin DH. 1981. Fungal physiology. New York: John Wiley & Sons.

Hasan F, Shah AA, Hameed A. 2009. Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv. 27(6):782–798. doi:10.1016/j.biotechadv.2009.06.001.

Hughes MN, Poole R. 1989. Metals and Microorganisms. London: Chapman & Hall.

Iftikhar T, Niaz M, Ali E, Jabeen R, Abdullah R. 2012. Production process of extracellular lipases by Fusarium sp. using agricultural by products. Pak J Bot. 44:335–339. http://www.pakbs.org/pjbot/PDFs/44(SI1)/50.pdf.

Imandi SB, Karanam SK, Garapati HR. 2010. Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Adv Biosci Biotechnol. 1(2):115–121. doi:10.4236/abb.2010.12016.

Ire FS, Ike VC. 2014. Screening and optimization of process parameters for the production of lipase in submerged fermentation by Aspergillus carbonarius (bainer) IMI 366159. Annu Res Rev Biol. 4(16):2587–2602. doi:10.9734/ARRB/2014/9879.

Jagtap S, Gore S, Yavankar S, Pardesi K, Chopade B. 2010. Optimization of medium for lipase production by Acinetobacter haemolyticus for healthy human skin. Ind J Exp Biol. 48:936–41. http://nopr.niscair.res.in/handle/123456789/10100.

Jia J, Yang X, Wu Z, Zhang Q, Lin Z, Guo H, Lin CSK, Wang J, Wang Y. 2015. Optimization of fermentation medium for extracellular lipase production from Aspergillus niger using response surface methodology. BioMed Res Int. 2015:e497462. doi:10.1155/2015/497462.

Kwon DY, Rhee JS. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. J Am Oil Chem Soc. 63(1):89–92. doi:10.1007/BF02676129.

Mahmoud G, Koutb M, Morsy F, Bagy M. 2015. Characterization of lipase enzyme produced by hydrocarbons utilizing fungus Aspergillus terreus. Eur J Biol Res. 5(3):70–77.

Mala JGS, Edwinoliver NG, Kamini NR, Puvanakrishnan R. 2007. Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J Gen Appl Microbiol. 53(4):247–253. doi:10.2323/jgam.53.247.

Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW. 2013. Lipase from Penicillium camembertii KCCM 11268: optimization of solid state fermentation and application to biodiesel production. Korean J Chem Eng. 30(2):405–412. doi:10.1007/s11814-012-0132-y.

Maliszewska I, Mastalerz P. 1992. Production and some properties of lipase from Penicillium citrinum. Enzyme Microb Technol. 14(3):190–193. doi:10.1016/0141-0229(92)90064-U.

Mukhtar H, Haq I, Nawaz A, Rehman A, Hanif M. 2015. Studies on the lipase production by Aspergillus niger through solid state fermentation. Pak J Bot. 47:351–354. http://www.pakbs.org/pjbot/PDFs/47(SI)/48.pdf.

Nadia N, Nehad ZA, Elsayed AE, Essam MA, Hanan MA. 2010. Optimization of lipase synthesis by Mucor racemosus - production in a triple impeller bioreactor. Malays J Microbiol. 6(1):7–15.

Oliveira F, Souza CE, Peclat VROL, Salgado JM, Ribeiro BD, Coelho MAZ, Venâncio A, Belo I. 2017. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food Bioprod Process. 102:268–277. doi:10.1016/j.fbp.2017.01.007.

Rodriguez JA, Mateos JC, Nungaray J, González V, Bhagnagar T, Roussos S, Cordova J, Baratti J. 2006. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 41(11):2264–2269. doi:10.1016/j.procbio.2006.05.017.

Ross S. 2010. Introductory statistics. 3rd edition. Burlington: Academic Press.

Sharma AK, Sharma V, Saxena J. 2016. A review on optimization of growth parameters for enhanced fungal lipase production. Indo Am J Pharm Sci. 3(10):1196–1202. doi:10.5281/ZENODO.164935.

Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 19(8):627–662. doi:10.1016/s0734-9750(01)00086-6.

Sridevi V, Veera C, Mahanti V, Venkata S, Adimadhyam N, Medicherla N. 2011. Statistical optimization of process variables by response surface methodology to enhance phenol degradation by Pseudomonas putida (NCIM 2102). Adv Biosci Biotechnol. 02(04):175–181. doi:10.4236/abb.2011.24028.

Stöcklein W, Sztajer H, Menge U, Schmid RD. 1993. Purification and properties of a lipase from Penicillium expansum. Biochim Biophys Acta Lipids Lipid Metab. 1168(2):181–189. doi:10.1016/0005-2760(93)90123-Q.

Subramonian S, Milkey K, Samsudin A, Dubey A, Kidd P. 2014. Comparison between taguchi method and response surface methodology (RSM) in modelling co2 laser machining. Jordan J Mech Ind Eng. 8(1):35–42.

Teng Y, Xu Y. 2008. Culture condition improvement for whole cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresour Technol. 99(9):3900–3907. doi:10.1016/j.biortech.2007.07.057.

Thakur S. 2012. Lipases, its sources, properties and applications: a review. Int J Sci Eng Res. 3(7):1–29.

Wang D, Xu Y, Shan T. 2008. Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochem Eng J. 41(1):30–37. doi:10.1016/j.bej.2008.03.003.

Xia Jl, Huang B, Nie Zy, Wang W. 2011. Production and characterization of alkaline extracellular lipase from newly isolated strain Aspergillus awamori HB-03. J Cent South Univ. 18(5):1425–1433. doi:10.1007/s11771-011-0857-5.

Yanti NA, Sriwahyuni E, Rayani N, Muhiddin NH, Ahmad SW. 2019. The potential of lipolytic filamentous ftungi isolated from landfill soil as poly-?-hydroxybutirate (PHB) bioplastic degrader. BioRxiv. doi:10.1101/2019.12.19.883538.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 The Author(s)

Downloads

Download data is not yet available.