Assessment of Trace Elements in Soils and Sediments in the Abandoned Mercury Mine Site in Puerto Princesa City, Philippines


Abandoned mine
Rare earth elements
Heavy metals


An abandoned mercury mine area in Puerto Princesa City, which was previously operated by Palawan Quicksilver Mines, Inc. (PQMI) from 1953 to 1976, is known for its unrehabilitated open-pit of mercury-rich rocks and exposed mine waste calcine stockpiles in the vicinity. In order to establish an understanding on the geology of the abandoned mercury mine deposit and to obtain clues in determining the possible metal pollutants in the area, measurement of trace element concentrations of soil and sediments collected from the PQMI vicinity were conducted. Soil and sediment samples were analyzed for heavy metals, rare-earth elements and naturally occurring radioactive elements and determined its contamination factor as part of risk assessment. Analytical results showed that aside from mercury, several heavy metals (nickel, chromium, manganese) were found to be anomalous due to the geology of the area. Statistical analyses show that chromium, nickel and antimony present the highest contamination factor among the sampling groups. Mercury is found to have negative bias with higher rare earth elements concentration but positively correlated with arsenic, antimony, and thallium. In general, there is low concentration of rare earth elements (except for scandium) in comparison with its respective average crustal concentration. Due to the nature of geology in the area, naturally occurring radioactive elements influence is also minimal. The results of this study, especially on the assessment of soil and sediment pollutants, are recommended as guidance to its mine rehabilitation.


Aide MT, Aide C. 2012. Rare earth elements: their importance in understanding soil genesis. ISRN Soil Sci. 2012:1–11. doi:10.5402/2012/783876.

Antonio L, Aguilar O, De Luna E, Palaganas U, Maikooksoong C. 1976. Geology and mineral resources of Palawan Province. Manila: Bureau of Mines.

Aurelio MA, Forbes MT, Taguibao KJL, Savella RB, Bacud JA, Franke D, Pubellier M, Savva D, Meresse F, Steuer S, Carranza CD. 2014. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: evidence from onshore structural and offshore seismic data. Mar Pet Geol. 58:658–673. doi:10.1016/j.marpetgeo.2013.12.002.

Chang C, Li F, Liu C, Gao J, Tong H, Chen M. 2016. Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochim. 35(4):329–339. doi:10.1007/s11631-016-0119-1.

Dey A, Hussain MF, Barman MN. 2018. Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India: implications for petrogenesis. Geosci Front. 9(2):517–529. doi:10.1016/j.gsf.2017.05.006.

Gibaga CRL, Arcilla CA, Hoang N. 2020. Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: tectonic and mantle heterogeneity constraints. J Asian Earth Sci X. 4:100038. doi:10.1016/j.jaesx.2020.100038.

Gray JE, Greaves IA, Bustos DM, Krabbenhoft DP. 2003. Mercury and methylmercury contents in mine-waste calcine, water, and sediment collected from the Palawan Quicksilver Mine, Philippines. Environ Geol. 43(3):298–307. doi:10.1007/s00254-002-0626-8.

Hakanson L. 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res. 14(8):975–1001. doi:10.1016/0043-1354(80)90143-8.

McDonough WF, Sun Ss. 1995. The composition of the Earth. Chem Geol. 120(3):223–253. doi:10.1016/0009-2541(94)00140-4.

Middelburg JJ, van der Weijden CH, Woittiez JRW. 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol. 68(3):253–273. doi:10.1016/0009-2541(88)90025-3.

Moghadam HS, Stern RJ. 2011. Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone. Geol Mag. 148(5-6):762–801. doi:10.1017/S0016756811000410.

Padrones JT, Imai A, Takahashi R. 2017. Geochemical behavior of rare earth elements in weathered granitic rocks in northern Palawan, Philippines. Resour Geol. 67(3):231–253. doi:10.1111/rge.12123.

Pallister JS, Knight RJ. 1981. Rare-earth element geochemistry of the Samail Ophiolite near Ibra, Oman. J Geo phys Res: Solid Earth. 86(B4):2673–2697. doi:10.1029/JB086iB04p02673.

Parsapoor A, Khalili M, Mackizadeh MA. 2009. The behaviour of trace and rare earth elements (REE) during hydrothermal alteration in the Rangan area (Central Iran). J Asian Earth Sci. 34(2):123–134. doi:10.1016/j.jseaes.2008.04.005.

Peña RE. 2008. Lexicon of Philippine stratigraphy, 2008. Mandaluyong City: Geological Society of the Philippines.

Putzolu F, Balassone G, Boni M, Maczurad M, Mondillo N, Najorka J, Pirajno F. 2018. Mineralogical association and Ni-Co deportment in the Wingellina oxide-type laterite deposit (Western Australia). Ore Geol Rev. 97:21–34. doi:10.1016/j.oregeorev.2018.05.005.

Samaniego J, Gibaga CR, Tanciongco A, Rastrullo R. 2020a. Total mercury in soils and sediments in the vicinity of abandoned mercury mine area in Puerto Princesa City, Philippines. Appl Sci. 10(13):4599. doi:10.3390/app10134599.

Samaniego J, Gibaga CR, Tanciongco A, Rastrullo R, Mendoza N, Racadio CD. 2020b. Comprehensive assessment on the environmental conditions of abandoned and inactive mines in the Philippines. ASEAN J Sci Technol Dev. 37(2):81–86. doi:10.29037/ajstd.623.

Suggate SM, Cottam MA, Hall R, Sevastjanova I, Forster MA, White LT, Armstrong RA, Carter A, Mojares E. 2014. South China continental margin signature for sandstones and granites from Palawan, Philippines. Gondwana Res. 26(2):699–718. doi:10.1016/

Taylor SR. 1964. Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta. 28(8):1273–1285. doi:10.1016/0016-7037(64) 90129-2.

Weng Z, Jowitt SM, Mudd GM, Haque N. 2015. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ Geol. 110(8):1925–1952. doi:10.2113/econgeo.110.8.1925.

Williams TM, Weeks JM, Jr AA, Miranda CR. 1999. Assessment of mercury contamination and human exposure associated with coastal disposal of waste from a cinnabar mining operation, Palawan, Philippines. Environ Geol. 39(1):51–60. doi:10.1007/s002540050436.

Yumul GP, Dimalanta CB, Marquez EJ, Queaño KL. 2009. Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: a review. J Asian Earth Sci. 34(5):610–623. doi:10.1016/j.jseaes.2008.10.002.

Zerda R. 1972. Geological investigation and mineral verification of 11 lode claims of Palawan Quicksilver Mines Inc., located at Sta. Lourdes, Puerto Princesa City, Palawan. Manila: Bureau of Mines.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 The Author(s)


Download data is not yet available.