BCSA Rawmix Design: Correlation between Chemical Constituents and Mineralogy


Alternative clinker
Bogue calculations
Quantitative estimation


The cement industry has been identified as one of the main contributors to climate change due to greenhouse gas emissions, mainly CO2. Therefore, to meet CO2 reduction targets, cement producers are working on different strategies of minimizing its emission, one of which is alternative clinkers. This study assessed the impact of variations of the raw mix design, concerning the type and proportions of materials, on the formation of calcium sulphoaluminate belite-type clinkers. Various materials were used to produce raw mixes for different percentages of belite, yeeliminite, and other minerals in resultant clinkers. Computer-based theoretical mixes were designed with different percentages of SiO2, CaO, Al2O3, Fe2O3, and SO3 and then the designed mixes were fired in a laboratory furnace at 1250°C with 20 min retention time. The resultant clinker samples were characterized with X-ray diffraction. The quantification of minerals in each sample was carried out with Rietveld refinement. The obtained results confirmed the correlation between the mineralogy and chemical constituents in the raw mix. The C4AF percentage of the resultant clinker samples increased with an increase in Fe2O3 percentage. C4A3$ content varied with the amounts of Al2O3, SO3, and CaO. The mineral percentage of C2S in the designed mixes had a clear correlation with the constituents of SiO2 and CaO. Anhydrite percentage in the resultant minerals changed with the SO3 content in the raw mix. These results should aid in the determination of the optimum amount of chemical constituents and minerals required for the development of calcium sulphoaluminate clinker.



Barcelo L, Kline J, Walenta G, Gartner E. 2014. Cement and carbon emissions. Mater Struct. 47(6):1055–1065. doi:10.1617/s11527-013-0114-5.

Beltagui H, Jen G, Whittaker M, Imbabi MS. 2017. The influence of variable gypsum and water content on the strength and hydration of a belite-calcium sulphoaluminate cement. Adv Appl Ceram. 116(4):199–206. doi:10.1080/17436753.2017.1289722.

Beretka JG, Santoro L, Sherman NM, Valenti GL. 1992. Synthesis and properties of low energy cements based on C4A3S. Paper presented at: ICCC 1992. Proceedings of the 9th International Congress on the Chemistry of Cement; New Delhi, India. p. 195–200. http://hdl.handle.net/102.100.100/247861?index=1

Bogue RH. 1929. Calculation of the compounds in Portland cement. Ind Eng Chem Anal Ed. 1(4):192–197. doi:10.1021/ac50068a006.

Borštnar M, Daneu N, Dolenec S. 2020. Phase development and hydration kinetics of belite-calcium sulfoaluminate cements at different curing temperatures. Ceram Int. 46(18):29421–29428. doi:10.1016/j.ceramint.2020.05.029.

CEMBUREAU. 2019. 2019 Activity report. Brussels: The European Cement Association. https://cembureau.eu/media/clkdda45/activity-report-2019.pdf.

Chen IA, Juenger MCG. 2011. Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase compositions. J Mater Sci. 46(8):2568–2577. doi:10.1007/s10853-010-5109-9.

García-Maté M, De la Torre AG, León-Reina L, Losilla ER, Aranda MA, Santacruz I. 2015. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cem Concr Compos. 55:53–61. doi:10.1016/j.cemconcomp.2014.08.003.

Gartner E, Sui T. 2018. Alternative cement clinkers. Cem Concr Res. 114:27–39. doi:10.1016/j.cemconres.2017.02.002.

Glasser FP, Zhang L. 2001. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem Concr Res. 31(12):1881–1886. doi:10.1016/S0008-8846(01)00649-4.

Hanic F, Kaprálik I, Gabrisová A. 1989. Mechanism of hydration reactions in the system C4A3S-CS-CaO-H2O referred to hydration of sulphoaluminate cements. Cem Concr Res. 19(5):671–682. doi:10.1016/0008-8846(89)90038-0

Roy D, Silsbee M, Xie Z. 1999. Influences of surplus SO3 in FBC ash on formation of belite-rich sulfoaluminate clinker. Paper presented at: 1999 International Ash Utilization Symposium Proceedings; Lexington, United States.

Sahu S, Majling J. 1994. Preparation of sulphoaluminate belite cement from fly ash. Cem Concr Res. 24(6):1065–1072. doi:10.1016/0008-8846(94)90030-2.

Schneider M. 2019. The cement industry on the way to a low-carbon future. Cem Concr Res. 124:105792. doi:10.1016/j.cemconres.2019.105792.

Shi C, Qu B, Provis JL. 2019. Recent progress in low-carbon binders. Cem Concr Res. 122:227–250. doi:10.1016/j.cemconres.2019.05.009.

Taylor HFW. 2015. Modification of the Bogue calculation. Adv Cem Res. 2(6):73–77. doi:10.1680/adcr.1989.2.6.73.

Telesca A, Marroccoli M, Ibris N, Lupiáñez C, Díez L, Romeo L, Montagnaro F. 2017. Use of oxyfuel combustion ash for the production of blended cements: a synergetic solution toward reduction of CO2 emissions. Fuel Process Technol. 156:211–220. doi:10.1016/.fuproc.2016.10.026.

Telesca A, Matschei T, Marroccoli M. 2020. Study of eco-friendly belite-calcium sulfoaluminate cements obtained from special wastes. Appl Sci. 10(23):8650. doi:10.3390/app10238650.

Tregambi C, Solimene R, Montagnaro F, Salatino P, Marroccoli M, Ibris N, Telesca A. 2018. Solar-driven production of lime for ordinary Portland cement formulation. Sol Energy. 173:759–768. doi:10.1016/j.solener.2018.08.018.

Walling SA, Provis JL. 2016. Magnesia-based cements: a journey of 150 years, and cements for the future? Chem Rev. 116(7):4170–4204. doi:10.1021/acs.chemrev.5b00463.

Winnefeld F, Barlag S. 2010. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim. 101(3):949–957. doi:10.1007/s10973-009-0582-6.

Winnefeld F, Lothenbach B. 2010. Hydration of calcium sulfoaluminate cements — experimental findings and thermodynamic modelling. Cem Concr Res. 40(8):1239–1247. doi:10.1016/j.cemconres.2009.08.014.

Winnefeld F, Martin LH, Müller CJ, Lothenbach B. 2017. Using gypsum to control hydration kinetics of CSA cements. Constr Build Mater. 155:154–163. doi:10.1016/j.conbuildmat.2017.07.217.

World Business Council for Sustainable Development. 2018. Low carbon technology roadmap for the Indian cement sector: status review 2018. Geneva: World Business Council for Sustainable Development. https://www.wbcsd.org/ktpwq.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2021 The Author(s)


Download data is not yet available.